Skip to main content
Log in

Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Currently, the majority of tools in synthetic biology have been designed and constructed for model organisms such as Escherichia coli and Saccharomyces cerevisiae. In order to broaden the spectrum of organisms accessible to such tools, we established a synthetic biological platform, called CoryneBrick, for gene expression in Corynebacterium glutamicum as a set of E. coli-C. glutamicum shuttle vectors whose elements are interchangeable with BglBrick standard parts. C. glutamicum is an established industrial microorganism for the production of amino acids, proteins, and commercially promising chemicals. Using the CoryneBrick vectors, we showed various time-dependent expression profiles of a red fluorescent protein. This CoryneBrick platform was also applicable for two-plasmid expression systems with a conventional C. glutamicum expression vector. In order to demonstrate the practical application of the CoryneBrick vectors, we successfully reconstructed the xylose utilization pathway in the xylose-negative C. glutamicum wild type by fast BglBrick cloning methods using multiple genes encoding for xylose isomerase and xylulose kinase, resulting in a growth rate of 0.11 ± 0.004 h−1 and a xylose uptake rate of 3.35 mmol/gDW/h when 1 % xylose was used as sole carbon source. Thus, CoryneBrick vectors were shown to be useful engineering tools in order to exploit Corynebacterium as a synthetic platform for the production of chemicals by controllable expression of the genes of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11(1):13–19

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23(4):631–640

    Article  CAS  PubMed  Google Scholar 

  • Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L (2013) Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res 41(12):6360–6369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyle PM, Burrill DR, Inniss MC, Agapakis CM, Deardon A, Dewerd JG, Gedeon MA, Quinn JY, Paull ML, Raman AM, Theilmann MR, Wang L, Winn JC, Medvedik O, Schellenberg K, Haynes KA, Viel A, Brenner TJ, Church GM, Shah JV, Silver PA (2012) A BioBrick compatible strategy for genetic modification of plants. J Biol Eng 6(1):8

    Article  PubMed Central  PubMed  Google Scholar 

  • Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C (2013) Systems metabolic engineering of xylose‐utilizing Corynebacterium glutamicum for production of 1,5‐diaminopentane. Biotechnol J 8(5):557–570

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Park JH, Kim TY, Lee SY (2012) Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab Eng 14(5):477–486

    Article  PubMed  Google Scholar 

  • Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27(8):753–759

    Article  CAS  PubMed  Google Scholar 

  • Dusch N, Pühler A, Kalinowski J (1999) Expression of the Corynebacterium glutamicum panD gene encoding l-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol 65(4):1530–1539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton

    Google Scholar 

  • Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  • Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JH, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108(2):504–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harth G, Masleša-Galić S, Horwitz MA (2004) A two-plasmid system for stable, selective-pressure-independent expression of multiple extracellular proteins in mycobacteria. Microbiology 150(7):2143–2151

    Article  CAS  PubMed  Google Scholar 

  • Hillson NJ (2011) DNA assembly method standardization for synthetic biomolecular circuits and systems. Design and Analysis of Biomolecular Circuits. Springer, New York, pp 295–314

    Book  Google Scholar 

  • Huang H-H, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62(2–3):99–109

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Ngouoto-Nkili C-E, Burkovski A (1999) Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech 13(6):437–441

    Article  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104(1):5–25

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72(5):3418–3428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keasling JD (2008) From yeast to alkaloids. Nat Chem Biol 4(9):524–525

    Article  CAS  PubMed  Google Scholar 

  • Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14(3):189–195

    Article  CAS  PubMed  Google Scholar 

  • Koffas MA, Jung GY, Stephanopoulos G (2003) Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metab Eng 5(1):32–41

    Article  CAS  PubMed  Google Scholar 

  • Lausberg F, Chattopadhyay AR, Heyer A, Eggeling L, Freudl R (2012) A tetracycline inducible expression vector for Corynebacterium glutamicum allowing tightly regulable gene expression. Plasmid 68(2):142–147

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Kim TY, Jang Y-S, Choi S, Lee SY (2011a) Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29(8):370–378

    Article  CAS  PubMed  Google Scholar 

  • Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, Lee SK, Keasling JD (2011b) BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J Biol Eng 5:12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4(3):251–256

    Article  CAS  PubMed  Google Scholar 

  • Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6(2):131–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nesvera J, Patek M, Hochmannova J, Abrhamova Z, Becvarova V, Jelinkova M, Vohradsky J (1997) Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 179(5):1525–1532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pátek M, Nesvera J (2013) Promoters and plasmid vectors of Corynebacterium glutamicum in Corynebacterium glutamicum: biology and biotechnology, 2nd edn. Springer Berlin, Heidelberg

    Google Scholar 

  • Pátek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G (2003) Promoters of Corynebacterium glutamicum. J Biotechnol 104(1–3):311–323

    Article  PubMed  Google Scholar 

  • Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L (2005) Metabolic engineering of Corynebacterium glutamicum for l-serine production. Appl Environ Microbiol 71(11):7139–7144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24(8):1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9(2):193–207

    Article  CAS  PubMed  Google Scholar 

  • Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6(2):242–251

    Article  CAS  PubMed  Google Scholar 

  • Ravasi P, Peiru S, Gramajo H, Menzella HG (2012) Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb Cell Fact 11(1):1–11

    Article  Google Scholar 

  • Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85(1):105–115

    Article  CAS  PubMed  Google Scholar 

  • Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith KM, Cho K-M, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87(3):1045–1055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smolke CD, Tyo KEJ (2012) Synthetic biology: emerging methodologies to catalyze the metabolic engineering design cycle. Metab Eng 14(3):187–188

    Article  CAS  PubMed  Google Scholar 

  • Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD (2009) High-level production of amorpha-4, 11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4(2):e4489

    Article  PubMed Central  PubMed  Google Scholar 

  • Van der Rest M, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52(4):541–545

    Article  PubMed  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9(3):268–274

    Article  CAS  PubMed  Google Scholar 

  • Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2013) Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6(2):87–102

    Article  PubMed Central  PubMed  Google Scholar 

  • Yim SS, An SJ, Kang M, Lee J, Jeong KJ (2013) Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol Bioeng 110(11):2959–2969

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Anthony J. Sinskey for the kind gift of pZ8-1 and M.S. Jae Hee Jung for technical assistant. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Science, ICT & Future Planning) (2014, University-Institute cooperation program) and Creative Allied Program (CAP) of the Korea Research Council of Fundamental Science and Technology (KRCF)/Korea Institute of Science and Technology (KIST) (project no. 2E24832).

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Min Woo.

Additional information

Min-Kyoung Kang and Jungseok Lee contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, MK., Lee, J., Um, Y. et al. Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization. Appl Microbiol Biotechnol 98, 5991–6002 (2014). https://doi.org/10.1007/s00253-014-5714-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5714-7

Keywords

Navigation