Skip to main content

Advertisement

Log in

Engineering of the TetR family transcriptional regulator SAV151 and its target genes increases avermectin production in Streptomyces avermitilis

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Avermectins produced by Streptomyces avermitilis are used commercially for broad-spectrum parasite control in medical, veterinary, and agricultural fields. Our previous comparative transcriptome analysis of wild-type strain ATCC31267 vs. avermectin-overproducing strain 76-02-e revealed that the gene SAV151, which encodes a TetR family transcriptional regulator, was downregulated in 76-02-e. In the present study, we investigated the role of SAV151 in avermectin production. Deletion of SAV151 increased avermectin yield ~1-fold in ATCC31267, and this phenotype was complemented by a single copy of SAV151. Overexpression of SAV151 in ATCC31267 reduced avermectin yield by ~70 %. RT-PCR analysis showed that the promoting effect of SAV151 deletion on avermectin production was not due to alteration of ave genes at the transcriptional level. SAV151 negatively regulated the transcription of itself and of the adjacent transcriptional unit SAV152-SAV153-SAV154. In chromatin immunoprecipitation and gel shift assays, purified His6-tagged SAV151 protein bound to the bidirectional SAV151-SAV152 promoter region. SAV151 bound to two palindromic sequences in this region and thereby repressed transcription from both directions. Two of the SAV151 target genes, SAV152 (which encodes a putative dehydrogenase) and SAV154 (which encodes a putative hydrolase), had promoting effects on avermectin production. Our findings provide the basis for a strategy to increase avermectin production by controlling SAV151 and its target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  PubMed  Google Scholar 

  • Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, Kong YL, Monaghan RL, Olson G, Putter I, Tunac JB, Wallick H, Stapley EO, Oiwa R, Omura S (1979) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15:361–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chater KF (1993) Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–713

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Wen J, Song Y, Wen Y, Li JL (2007) Enhancement and selective production of avermectin B by recombinants of Streptomyces avermitilis via intraspecific protoplast fusion. Chin Sci Bull 52:616–622

    Article  CAS  Google Scholar 

  • Duong CT, Lee HN, Choi SS, Lee SY, Kim ES (2009) Functional expression of SAV3818, a putative TetR-family transcriptional regulatory gene from Streptomyces avermitilis, stimulates antibiotic production in Streptomyces species. J Microbiol Biotechnol 19:136–139

    Article  CAS  PubMed  Google Scholar 

  • Fowler-Goldsworthy K, Gust B, Mouz S, Chandra G, Findlay KC, Chater KF (2011) The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). Microbiology 157:1312–1328

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Zhao JL, Li LL, Chen Z, Wen Y, Li JL (2010) The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Mol Genet Genomics 283:123–133

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Zhang X, Luo S, He F, Chen Z, Wen Y, Li JL (2013) A novel TetR family transcriptional regulator, SAV576, negatively controls avermectin biosynthesis in Streptomyces avermitilis. PLoS One 8:e71330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hopwood DA (2007) Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, New York

    Google Scholar 

  • Ikeda H, Omura S (1997) Avermectin biosynthesis. Chem Rev 97:2591–2610

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Kotaki H, Tanaka H, Omura S (1988) Involvement of glucose catabolism in avermectin production by Streptomyces avermitilis. Antimicrob Agents Chemother 32:282–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda H, Nonomiya T, Usami M, Ohta T, Omura S (1999) Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci U S A 96:9509–9514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda H, Nonomiya T, Omura S (2001) Organization of biosynthetic gene cluster for avermectin in Streptomyces avermitilis: analysis of enzymatic domains in four polyketide synthases. J Ind Microbiol Biotechnol 27:170–176

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Im JH, Kim MG, Kim ES (2007) Comparative transcriptome analysis for avermectin overproduction via Streptomyces avermitilis microarray system. J Microbiol Biotechnol 17:534–538

    CAS  PubMed  Google Scholar 

  • Kang SH, Huang JQ, Lee HN, Hur YA, Cohen SN, Kim ES (2007) Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J Bacteriol 189:4315–4319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A 107:2646–2651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li LL, Guo J, Wen Y, Chen Z, Song Y, Li JL (2010) Overexpression of ribosome recycling factor causes increased production of avermectin in Streptomyces avermitilis strains. J Ind Microbiol Biotechnol 37:673–679

    Article  CAS  PubMed  Google Scholar 

  • Liu YP, Yan TT, Jiang LB, Wen Y, Song Y, Chen Z, Li JL (2013) Characterization of SAV7471, a TetR-family transcriptional regulator involved in the regulation of CoA metabolism in Streptomyces avermitilis. J Bacteriol 195:4365–4372

    Google Scholar 

  • Lum AM, Huang JQ, Hutchinson CR, Kao CM (2004) Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metab Eng 6:186–196

    Article  CAS  PubMed  Google Scholar 

  • MacNeil DJ, Klapko LM (1987) Transformation of Streptomyces avermitilis by plasmid DNA. J Ind Microbiol 2:209–218

    Article  CAS  Google Scholar 

  • Miyamoto KT, Kitani S, Komatsu M, Ikeda H, Nihira T (2011) The autoregulator receptor homologue AvaR3 plays a regulatory role in antibiotic production, mycelial aggregation and colony development of Streptomyces avermitilis. Microbiology 157:2266–2275

    Article  CAS  PubMed  Google Scholar 

  • Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98:12215–12220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun P, Zhao QF, Yu FT, Zhang H, Wu ZH, Wang YY, Wang Y, Zhang QL, Liu W (2013) Spiroketal formation and modification in avermectin biosynthesis involves a dual activity of AveC. J Am Chem Soc 135:1540–1548

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Reichheld SE, Savchenko A, Parkinson J, Davidson AR (2010) A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators. J Mol Biol 400:847–864

    Article  CAS  PubMed  Google Scholar 

  • Zhao JL, Wen Y, Chen Z, Song Y, Li JL (2007) An adpA homologue in Streptomyces avermitilis is involved in regulation of morphogenesis and melanogenesis. Chin Sci Bull 52:623–630

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (grant no. 31170045). We thank Dr. S. Anderson for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, F., Liu, W., Sun, D. et al. Engineering of the TetR family transcriptional regulator SAV151 and its target genes increases avermectin production in Streptomyces avermitilis . Appl Microbiol Biotechnol 98, 399–409 (2014). https://doi.org/10.1007/s00253-013-5348-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5348-1

Keywords

Navigation