Skip to main content
Log in

Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

2-Ketoisocaproate (KIC) is used as a therapeutic agent, and a KIC-producing organism may serve as a platform for products deriving from this 2-keto acid. We engineered Corynebacterium glutamicum for the production of KIC from glucose by deletion of ltbR and ilvE, encoding the transcriptional repressor LtbR and transaminase B, respectively, and additional overexpression of ilvBNCD, encoding acetohydroxyacid synthase, acetohydroxyacid isomeroreductase, and dihydroxyacid dehydratase. The KIC-producing strain was improved by deletion of the methylcitrate synthase genes and by decreasing citrate synthase activity by exchange of the native promoter of the citrate synthase gene. In shake-flask fermentations under l-leucine limitation, the newly constructed strain C. glutamicum VB (pJC4ilvBNCD) produced 31 ± 2 mM (4.0 ± 0.3 g l−1) KIC and showed a product yield of about 0.26 ± 0.02 mol per mole (0.19 ± 0.01 g per gram) of glucose. As by-product, the strain formed about 33 mM 2-ketoisovalerate, which is a precursor of KIC. KIC production was further improved by additional expression of an isopropylmalate synthase allele (leuA EC-G462D), encoding an enzyme resistant towards l-leucine inhibition, and by addition of acetate as additional substrate. With glucose and acetate, the newly constructed strain produced 71 ± 3.2 mM (9.2 ± 0.4 g l−1) KIC with a yield of 0.24 ± 0.01 mol C (KIC) per mole C (in both substrates) and with nearly no 2-ketoisovalerate by-product formation (<2 mM). Investigating the activities and regulation of the native isopropylmalate synthase and dehydratase of C. glutamicum, we observed competitive and noncompetitive inhibition, respectively, by KIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe S, Takayama K, Kinoshita S (1967) Taxonomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol 13:279–301

    Article  Google Scholar 

  • Aparicio M, Cano NJM, Cupisti A, Ecder T, Fouque D, Garneata L, Liou H, Lin S, Schober-Halstenberg H, Teplan V, Zakar G (2009) Keto-acid therapy in predialysis chronic kidney disease patients: consensus statements. J Ren Nutr 19:33–35

    Article  Google Scholar 

  • Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ (2008) Ethanol catabolism in Corynebacterium glutamicum. J Mol Microbiol Biotechnol 15:222–233

    Article  CAS  PubMed  Google Scholar 

  • Bigelis R, Umbarger HE (1976) Yeast alpha-isopropylmalate isomerase. Factors affecting stability and enzyme activity. J Biol Chem 251:3545–3552

    CAS  PubMed  Google Scholar 

  • Birnboim HC (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol 100:243–255

    CAS  PubMed  Google Scholar 

  • Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol 79:471–479

    Article  CAS  PubMed  Google Scholar 

  • Blombach B, Stephan H, Brigitte B, Eikmanns BJ (2009) Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:419–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brune I, Jochmann N, Brinkrolf K, Hüser AT, Gerstmeir R, Eikmanns BJ, Kalinowski J, Pühler A, Tauch A (2007) The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum. J Bacteriol 189:2720–2733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang JH, Kim DK, Park JT, Kang EW, Yoo TH, Kim BS, Choi KH, Lee HY, Han D, Shin SK (2009) Influence of ketoanalogs supplementation on the progression in chronic kidney disease patients who had training on low-protein diet. Nephrology 14:750–757

    Article  CAS  PubMed  Google Scholar 

  • Connor MR, Liao JC (2008) Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl Environ Microbiol 74:5769–5775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Connor MR, Cann AF, Liao JC (2010) 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 86:1155–1164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper AJL, Ginos JZ, Meister A (1983) Synthesis and properties of the alpha-keto acids. Chem Rev 83:321–358

    Article  CAS  Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 13–16

    Google Scholar 

  • Eggeling I, Cordes C, Eggeling L, Sahm H (1987) Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of 2-ketobutyrate to L-isoleucine. Appl Microbiol Biotechnol 25:346–351

    Article  CAS  Google Scholar 

  • Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H (1991) Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34:617–622

    Article  CAS  PubMed  Google Scholar 

  • Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke KU, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828

    Article  CAS  PubMed  Google Scholar 

  • Feiten SF, Draibe SA, Watanabe R, Duenhas MR, Baxmann AC, Nerbass FB, Cuppari L (2005) Short-term effects of a very-low-protein diet supplemented with ketoacids in nondialyzed chronic kidney disease patients. Eur J Clin Nutr 59:129–136

    Article  CAS  PubMed  Google Scholar 

  • Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104:99–122

    Article  CAS  PubMed  Google Scholar 

  • Gross SR (1965) The regulation of synthesis of leucine biosynthetic enzymes in Neurospora. Proc Natl Acad Sci U S A 54:1538–1546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gusyatiner MM, Lunts MG, Kozlov YI, Ivanovskaya LV, Voroshilova EB (2002) DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine. US patent 6,403,342 B1

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H (2013) Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79:1250–1257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heider SAE, Peters-Wendisch P, Wendisch VF (2012) Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiol 12:98

    Article  Google Scholar 

  • Hsu Y-P, Kohlhaw GB, Niederberger P (1982) Evidence that alpha-isopropylmalate synthase of Saccharomyces cerevisiae is under the “general” control of amino acid biosynthesis. J Bacteriol 150:969–972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elisáková V, Pátek M, Kalinowski J, Brune I, Pühler A, Tauch A (2005) Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71:3255–3268

    Article  PubMed Central  PubMed  Google Scholar 

  • Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol 75:1635–1641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004a) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  CAS  PubMed  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004b) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen deprivation-conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  PubMed  Google Scholar 

  • Jensen JVK, Wendisch VF (2013) Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb Cell Fact 12:63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jo S, Maeda M, Ooi T, Taguchi S (2006) Production system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum. J Biosci Bioeng 102:233–236

    Article  CAS  PubMed  Google Scholar 

  • Jo JH, Seol HY, Lee YB, Kim MH, Hyun HH, Lee HH (2012) Disruption of genes for the enhanced biosynthesis of α-ketoglutarate in Corynebacterium glutamicum. Can J Microbiol 58:278–286

    Article  CAS  PubMed  Google Scholar 

  • Kind S, Wittmann C (2011) Bio-based production of the platform chemical 1,5 diaminopentane. Appl Microbiol Biotechnol 5:1287–1296

    Article  Google Scholar 

  • Kinoshita S, Udaka S, Shimono M (1957) Studies on the amino acid fermentation. Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205

    Article  CAS  Google Scholar 

  • Kohlhaw GB (1988) Alpha-isopropylmalate synthase from yeast. Methods Enzymol 166:414–423

    CAS  PubMed  Google Scholar 

  • Kohlhaw GB (2003) Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 67:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohlhaw GB, Leary TR, Umbarger HE (1969) Alpha-isopropylmalate synthase from Salmonella typhimurium: purification and properties. J Biol Chem 244:2218–2225

    CAS  PubMed  Google Scholar 

  • Krause FS, Blombach B, Eikmanns BJ (2010a) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol 76:8053–8061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krause FS, Henrich A, Blombach B, Krämer R, Eikmanns BJ, Seibold GM (2010b) Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity. Appl Environ Microbiol 76:370–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krill S (2003) Verfahren zur Herstellung von 6-Methylheptanon. European patent 1366009 A1

  • Lee EH, Cho YW, Hwang KY (2012) Crystal structure of LeuD from Methanococcus jannaschii. Biochem Biophys Res Commun 419:160–164

    Article  CAS  PubMed  Google Scholar 

  • Liebl W (2006) The genus Corynebacterium—nonmedical. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes, vol 3, 3rd edn. Springer, New York, pp 796–818

    Chapter  Google Scholar 

  • Litsanov B, Brocker M, Bott M (2012a) Towards homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic succinate production from glucose and formate. Appl Environ Microbiol 78:3325–3337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Litsanov B, Kabus A, Brocker M, Bott M (2012b) Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 5:116–128

    Article  CAS  PubMed  Google Scholar 

  • Marienhagen J, Eggeling L (2008) Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production. Appl Environ Microbiol 74:7457–7462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187:7639–7646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverin fermentation. Biosci Biotechnol Biochem 71:2130–2135

    Article  CAS  PubMed  Google Scholar 

  • Morbach S, Junger C, Sahm H, Eggeling L (2000) Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J Biosci Bioeng 90:501–507

    CAS  PubMed  Google Scholar 

  • Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897

    Article  CAS  PubMed  Google Scholar 

  • Nunan D, Howatson G, van Someren KA (2010) Exercise-induced muscle damage is not attenuated by beta-hydroxy-beta-methylbutyrate and alpha-ketoisocaproic acid supplementation. J strength Cond Res 24:531–537

    Article  PubMed  Google Scholar 

  • Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454

    Article  CAS  PubMed  Google Scholar 

  • Parsons SJ, Burns OR (1969) Purification and properties of β-isopropylmalate dehydrogenase. J Biol Chem 244:996–1003

    CAS  PubMed  Google Scholar 

  • Pátek M (2007) Branched-chain amino acids. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, Berlin, pp 129–162

    Chapter  Google Scholar 

  • Pátek M, Krumbach K, Eggeling L, Sahm H (1994) Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol 60:133–140

    PubMed Central  PubMed  Google Scholar 

  • Pátek M, Hochmannová J, Jelínková M, Nesvera J, Eggeling L (1998) Analysis of the leuB gene from Corynebacterium glutamicum. Appl Microbiol Biotechnol 50:42–47

    Article  PubMed  Google Scholar 

  • Radmacher E, Eggeling L (2007) The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of L-lysine synthesis. Appl Microbiol Biotechnol 76:587–595

    Article  CAS  PubMed  Google Scholar 

  • Sahm H, Eggeling L (1999) d-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding l-valine synthesis for d-pantothenate overproduction. Appl Environ Microbiol 65:1973–1979

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai S, Tsuchida Y, Nakamoto H, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73:2349–2353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 73, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 2349–2353

  • Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86:1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the E. coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–868

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Wendisch VF (2011) Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol 91:17–30

    Article  CAS  PubMed  Google Scholar 

  • Schrumpf B, Eggeling L, Sahm H (1992) Isolation and prominent characteristics of anL-lysine hyperproducing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol 37:566–571

    Article  CAS  Google Scholar 

  • Seliverstov AV, Putzer H, Gelfand MS, Lyubetsky VA (2005) Comparative analysis of RNA regulatory elements of amino acid metabolism genes in Actinobacteria. BMC Microbiol 5:54

    Article  PubMed Central  PubMed  Google Scholar 

  • Srere PA (1969) Citrate synthase. Methods Enzymol 13:3–11

    CAS  Google Scholar 

  • Stieglitz BI, Calvo JM (1974) Distribution of the isopropylmalate pathway to leucine among diverse bacteria. J Bacteriol 118:935–994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeno S, Ohnishi J, Komatsu T, Masaki T, Sen K, Ikeda M (2007) Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum. Appl Microbiol Biotechnol 75:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K (2007) Systems biology for industrial strains and fermentation processes—example: amino acids. J Biotechnol 129:181–190

    Article  CAS  PubMed  Google Scholar 

  • Teschan PE, Beck GJ, Dwyer JT, Greene T, Klahr S, Levy AS, Mitch WE, Snetselaar LG, Steinman TI, Walser M (1998) Effect of a ketoacid-aminoacid supplemented very low protein diet on the progression of advanced renal disease: a reanalysis of the MDRD feasibility study. Clin Nephrol 50:273–283

    CAS  PubMed  Google Scholar 

  • Teschner M, Heidland A (1991) Nutritional management of the uremic patient. In: Suki WN, Massry SG (eds) Therapy of renal diseases and related disorders, 2nd edn. Kluwer Academic Publishers, Norwell, pp 675–696

    Chapter  Google Scholar 

  • van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogenic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  PubMed  Google Scholar 

  • van Ooyen J, Noack S, Bott M, Reth A, Eggeling L (2012) Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 109:2070–2081

    Article  PubMed  Google Scholar 

  • van Someren KA, Edwards AJ, Howatson G (2005) Supplementation with betahydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man. Int J Sport Nutr Exerc Metab 15:413–424

    PubMed  Google Scholar 

  • Vásicová P, Pátek M, Nesvera J, Sahm H, Eikmanns BJ (1999) Analysis of the Corynebacterium glutamicum dapA promoter. J Bacteriol 181:6188–6191

    PubMed Central  PubMed  Google Scholar 

  • Wendisch VF, Spies M, Reinscheid DJ, Schnicke S, Sahm H, Eikmanns BJ (1997) Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Arch Microbiol 168:262–269

    Article  CAS  PubMed  Google Scholar 

  • Wiegel J, Schlegel HG (1977a) α-Isopropylmalate synthase from Alcaligenes eutrophus H 16. II. Substrate specificity and kinetics. Arch Microbiol 112:247–254

    Article  CAS  PubMed  Google Scholar 

  • Wiegel J, Schlegel HG (1977b) α-Isopropylmalate synthase from Alcaligenes eutrophus H 16. III. End product inhibition and its relief by valine and isoleucine. Arch Microbiol 114:203–210

    Article  CAS  PubMed  Google Scholar 

  • Wieschalka S, Blombach B, Eikmanns BJ (2012) Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol 94:449–459

    Article  CAS  PubMed  Google Scholar 

  • Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2013) Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6:87–102

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H (2013) Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol Bioeng. doi:10.1002/bit.24961

    PubMed  Google Scholar 

  • Yindeeyoungyeon W, Likitvivatanavong S, Palittapongarnpim P (2009) Characterization of alpha-isopropylmalate synthases containing different copy numbers of tandem repeats in Mycobacterium tuberculosis. BMC Microbiol 9:122

    Article  PubMed Central  PubMed  Google Scholar 

  • Zanchi NE, Gerlinger-Romero F, Guimarães-Ferreira L, de Siqueira Filho MA, Felitti V, Lira FS, Seelaender M, Lancha AH Jr (2011) HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino Acids 40:1015–1025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Marienhagen, J. van Ooyen, and L. Eggeling (all three IBG-1, Research Center jülich) for providing plasmids pJC4ilvBNCD, pK19mobsacBΔilvE, pK19ΔPgltA_B-L1, pK19mobsacBΔprpC1, and pK19mobsacBΔprpC1. The support of the State Baden Württemberg (MINT programme, grant 31-655.056-1/145) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard J. Eikmanns.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bückle-Vallant, V., Krause, F.S., Messerschmidt, S. et al. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl Microbiol Biotechnol 98, 297–311 (2014). https://doi.org/10.1007/s00253-013-5310-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5310-2

Keywords

Navigation