Skip to main content
Log in

Combined gene cluster engineering and precursor feeding to improve gougerotin production in Streptomyces graminearus

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Gougerotin is a peptidyl nucleoside antibiotic produced by Streptomyces graminearus. It is a specific inhibitor of protein synthesis and exhibits a broad spectrum of biological activities. Generation of an overproducing strain is crucial for the scale-up production of gougerotin. In this study, the natural and engineered gougerotin gene clusters were reassembled into an integrative plasmid by λ-red-mediated recombination technology combined with classic cloning methods. The resulting plasmids pGOU and pGOUe were introduced into S. graminearus to obtain recombinant strains Sgr-GOU and Sgr-GOUe, respectively. Compared with the wild-type strain, Sgr-GOU led to a maximum 1.3-fold increase in gougerotin production, while Sgr-GOUe resulted in a maximum 2.1-fold increase in gougerotin production. To further increase the yield of gougerotin, the effect of different precursors on its production was investigated. All precursors, including cytosine, serine, and glycine, had stimulatory effect on gougerotin production. The maximum gougerotin yield was achieved with Sgr-GOUe in the presence of glycine, and it was approximately 2.5-fold higher than that of the wild-type strain. The strategies used in this study can be extended to other Streptomyces for improving production of industrial important antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  PubMed  CAS  Google Scholar 

  • Combes P, Till R, Bee S, Smith MC (2002) The Streptomyces genome contains multiple pseudo-attB sites for the ϕC31-encoded site-specific recombination system. J Bacteriol 184:5746–5752

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Du D, Zhu Y, Wei J, Tian Y, Niu G, Tan H (2013) Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Appl Microbiol Biotechnol 97:6383–6396

    Article  PubMed  CAS  Google Scholar 

  • Fierro F, Barredo JL, Díez B, Gutierrez S, Fernández FJ, Martín JF (1995) The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci U S A 92:6200–6204

    Article  PubMed  CAS  Google Scholar 

  • Gregory MA, Till R, Smith MC (2003) Integration site for Streptomyces phage ϕBT1 and development of site-specific integrating vectors. J Bacteriol 185:5320–5323

    Article  PubMed  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546

    Article  PubMed  CAS  Google Scholar 

  • Haneishi T, Arai M, Kitano N, Yamamoto S (1974) Aspiculamycin, a new cytosine nucleoside antibiotic. 3. Biological activities, in vitro and in vivo. J Antibiot 27:339–342

    Article  PubMed  CAS  Google Scholar 

  • Kaysser L, Wemakor E, Siebenberg S, Salas JA, Sohng JK, Kammerer B, Gust B (2010) Formation and attachment of the deoxysugar moiety and assembly of the gene cluster for caprazamycin biosynthesis. Appl Environ Microbiol 76:4008–4018

    Article  PubMed  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich, United Kingdom

    Google Scholar 

  • Kondo F, Kitano N, Domon H, Arai M, Haneishi T (1974) Aspiculamycin, a new cytosine nucleoside antibiotic. IV. Antimycoplasma activity of aspiculamycin in vitro and in vivo. J Antibiot 27:529–534

    Article  PubMed  CAS  Google Scholar 

  • Lacal JC, Vázquez D, Fernandez-Sousa JM, Carrasco L (1980) Antibiotics that specifically block translation in virus-infected cells. J Antibiot 33:441–446

    Article  PubMed  CAS  Google Scholar 

  • Lee HN, Huang J, Im JH, Kim SH, Noh JH, Cohen SN, Kim ES (2010) Putative TetR family transcriptional regulator SCO1712 encodes an antibiotic downregulator in Streptomyces coelicolor. Appl Environ Microbiol 76:3039–3043

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Ling H, Li W, Tan H (2005) Improvement of nikkomycin production by enhanced copy of sanU and sanV in Streptomyces ansochromogenes and characterization of a novel glutamate mutase encoded by sanU and sanV. Metab Eng 7:165–173

    Article  PubMed  Google Scholar 

  • Liao G, Li J, Li L, Yang H, Tian Y, Tan H (2009) Selectively improving nikkomycin Z production by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes. Microb Cell Fact 8:61

    Article  PubMed  Google Scholar 

  • Liao G, Li J, Li L, Yang H, Tian Y, Tan H (2010) Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production. Microb Cell Fact 9:6

    Article  PubMed  Google Scholar 

  • Liu G, Tian Y, Yang H, Tan H (2005) A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol 55:1855–1866

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Burian J, Yanai K, Bibb MJ, Thompson CJ (2011) A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor. Proc Natl Acad Sci U S A 108(38):16020–16025

    Article  PubMed  CAS  Google Scholar 

  • Niu G, Li L, Wei J, Tan H (2013) Cloning, heterologous expression, and characterization of the gene cluster required for gougerotin biosynthesis. Chem Biol 20:34–44

    Article  PubMed  CAS  Google Scholar 

  • Ostash B, Makitrinskyy R, Walker S, Fedorenko V (2009) Identification and characterization of Streptomyces ghanaensis ATCC14672 integration sites for three actinophage-based plasmids. Plasmid 61:171–175

    Article  PubMed  CAS  Google Scholar 

  • Paget MS, Chamberlin L, Atrih A, Foster SJ, Buttner MJ (1999) Evidence that the extracytoplasmic function sigma factor σE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181:204–211

    PubMed  CAS  Google Scholar 

  • Peschke U, Schmidt H, Zhang HZ, Piepersberg W (1995) Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78–11. Mol Microbiol 16:1137–1156

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sioud S, Aigle B, Karray-Rebai I, Smaoui S, Bejar S, Mellouli L (2009) Integrative gene cloning and expression system for Streptomyces sp. US 24 and Streptomyces sp. TN 58 bioactive molecule producing strains. J Biomed Biotechnol 2009:464986

    Article  PubMed  Google Scholar 

  • Xia M, Huang D, Li S, Wen J, Jia X, Chen Y (2013) Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis. Biotechnol Bioeng 110:2717–2730

    Google Scholar 

  • Yanai K, Murakami T, Bibb M (2006) Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc Natl Acad Sci U S A 103:9661–9666

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Cao N, Wang L, Xiao C, Guo M, Chu J, Zhuang Y, Zhang S (2012) Oxytetracycline biosynthesis improvement in Streptomyces rimosus following duplication of minimal PKS genes. Enzyme Microb Technol 50:318–324

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (grant nos. 31171202 and 31270110) and the Ministry of Science and Technology of China (grant nos. 2012CB721103 and 2013CB734001). We would like to thank Dr. Bertolt Gust (University of Tübingen, Tübingen, Germany) for providing the PCR targeting system.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqing Niu or Huarong Tan.

Additional information

Lingjuan Jiang and Junhong Wei contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Wei, J., Li, L. et al. Combined gene cluster engineering and precursor feeding to improve gougerotin production in Streptomyces graminearus . Appl Microbiol Biotechnol 97, 10469–10477 (2013). https://doi.org/10.1007/s00253-013-5270-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5270-6

Keywords

Navigation