Skip to main content
Log in

Freeze-dried microalgae of Nannochloropsis oculata improve soybean oil's oxidative stability

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Marine microalga Nannochloropsis oculata possesses nutrients valuable for human health. In this study, we added freeze-dried N. oculata powder to soybean oil and observed a remarkable inhibition in oil oxidation. The amount of microalgae powder added was positively correlated to the increase in oil stability. The addition of 5.0 % (w/w) microalgae powder increased the oil stability index (OSI) values of soybean oil more than twofold at the tested temperatures 120 and 130 °C. N. oculata contains high levels of both phenolic compounds and α-tocopherols that could be the contributors to such an increase of the OSI. Two methods were conducted to assay the active ingredients released from microalgae: one employed three solvent systems to extract the microalgae and the other was the soybean oil added with microalgae. Analyses of free radical scavenging and reducing power suggested that the phenolic compounds dominated the antioxidation activities in soybean oil when it was infused with the microalgae powder. Our results suggest that N. oculata could potentially be used as an additive in cooking oil to increase the shelf life and nutritional value of the oil and to reduce the production of free radicals from lipid oxidation when the oil is used at high-temperature cooking processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Awika JM, Rooney LW, Wu X, Prior R, Cisneros-Zevallos L (2003) Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51:6657–6662. doi:10.1021/jf034790i

    Article  PubMed  CAS  Google Scholar 

  • Bhuvaneswari S, Murugesan S, Subha TS, Dhamotharan R, Shettu N (2013) In vitro antioxidant activity of marine red algae Chondrococcus hornemanni and Spyridia fusiformis. J Chem Pharm Res 5:82–85

    CAS  Google Scholar 

  • Bouaziz M, Fki I, Jemai H, Ayadi M, Sayadi S (2008) Effect of storage on refined and husk olive oils composition: stabilization by addition of natural antioxidants from Chemlali olive leaves. Food Chem 108:253–262. doi:10.1016/j.foodchem.2007.10.074

    Article  CAS  Google Scholar 

  • Brown MR (2002) Nutritional value and use of microalgae in aquaculture. CSIRO Mar Res 3:281–292

    Google Scholar 

  • Brown MR, Mular M, Miller I, Farmer C, Trenerry C (1999) The vitamin content of microalgae used in aquaculture. J Appl Phycol 11:247–255. doi:10.1023/A:1008075903578

    Article  CAS  Google Scholar 

  • Buratti S, Benedetti S, Cosio MS (2007) Evaluation of the antioxidant power of honey, propolis and royal jelly by amperometric flow injection analysis. Talanta 71:1387–1392. doi:10.1016/j.talanta.2006.07.006

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi R, Uppalapati SR, Alamsjah MA, Fujita Y (2004) Isolation of quizalofop-resistant mutants of Nannochloropsis oculata (Eustigmatophyceae) with high eicosapentaenoic acid following N-methyl-N-nitrosourea-induced random mutagenesis. J Appl Phycol 16:135–144. doi:10.1023/B:JAPH.0000044826.70360.8e

    Article  CAS  Google Scholar 

  • Chen M, Bergman CJ (2005) A rapid procedure for analyzing rice bran tocopherol, tocotrienol and γ-oryzanol contents. J Food Compos Anal 18:139–151. doi:10.1016/j.jfca.2003.09.004

    Article  Google Scholar 

  • Dai F, Chen WF, Zhou B (2008) Antioxidant synergism of green tea polyphenols with α-tocopherol and l-ascorbic acid in SDS micelles. Biochimie 90:1499–1505. doi:10.1016/j.biochi.2008.05.007

    Article  PubMed  CAS  Google Scholar 

  • De Leonardis A, Macciola V, Lembo G, Aretini A, Nag A (2007) Studies on oxidative stabilisation of lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chem 100:998–1004. doi:10.1016/j.foodchem.2005.10.057

    Article  Google Scholar 

  • Del Campo JA, García-González M, Guerrero (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174. doi:10.1007/s00253-007-0844-9

    Article  PubMed  CAS  Google Scholar 

  • Durmaz Y (2007) Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272:717–722. doi:10.1016/j.aquaculture.2007.07.213

    Article  CAS  Google Scholar 

  • Garcia-Bailo B, Toguri C, Eny KM, El-Sohemy A (2009) Genetic variation in taste and its influence on food selection. OMICS 13:69–80. doi:10.1089/omi.2008.0031

    Article  PubMed  CAS  Google Scholar 

  • Gregory JF (1996) Vitamins. In: Fennema OR (ed) Food chemistry, 3rd edn. Marcel Dekker, New York, pp 553–557

    Google Scholar 

  • Harris PL, Quaife ML, Swanson WJ (1950) Vitamin E content of foods. J Nutr 40:367–381

    CAS  Google Scholar 

  • Horwitz W (ed) (2002) Peroxide value of oils and fats. 41.1.16 AOAC Official Method 965.33. Official Methods of Analysis of AOAC International, 17th edn. AOAC International, Gaithersberg

    Google Scholar 

  • Khozin-Goldberg I, Boussiba S (2011) Concerns over the reporting of inconsistent data on fatty acid composition for microalgae of the genus Nannochloropsis (Eustigmatophyceae). J Appl Phycol 23:933–934. doi:10.1007/s10811-011-9659-2

    Article  Google Scholar 

  • Lampert D (1999) High-stability oils: What are they? How are they made? Why do we need them? In: Widlak N (ed) Physical properties of fats, oils, and emulsifiers. AOCS Press, Champaign, p 238

  • Lee MY, Min BS, Chang CS, Jin E (2006) Isolation and characterization of a xanthophyll aberrant mutant of the green alga Nannochloropsis oculata. Mar Biotechnol 8:238–245. doi:10.1007/s10126-006-5078-9

    Article  PubMed  CAS  Google Scholar 

  • Lesschaeve I, Noble AC (2005) Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. Am J Clin Nutr 81:330S–335S

    PubMed  CAS  Google Scholar 

  • Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776. doi:10.1016/j.bbr.2011.03.031

    Article  CAS  Google Scholar 

  • Liu M, Hansen PE, Lin X (2011) Bromophenols in marine algae and their bioactivities. Mar Drugs 9:1273–1292. doi:10.3390/md9071273

    Article  PubMed  CAS  Google Scholar 

  • Martínez Nieto L, Hodaifa G, Lozano Peña JL (2010) Changes in phenolic compounds and Rancimat stability of olive oils from varieties of olives at different stages of ripeness. J Sci Food Agric 90:2393–2398. doi:10.1002/jsfa.4097

    Article  PubMed  Google Scholar 

  • Mitaku S, Ikuta K, Itoh H, Kataoka R, Naka M, Yamada M, Suwa M (1988) Denaturation of bacteriorhodopsin by organic solvents. Biophys Chem 30:69–79. doi:10.1016/0301-4622(88)85005-1

    Article  PubMed  CAS  Google Scholar 

  • Natrah FMI, Yusoff FM, Shariff M, Abas F, Mariana NS (2007) Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol 19:711–718. doi:10.1007/s10811-007-9192-5

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on product of reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648. doi:10.1007/s00253-004-1647-x

    Article  PubMed  CAS  Google Scholar 

  • Roncarati A, Meluzzi A, Acciarri S, Tallarico N, Melotti P (2004) Fatty acid composition of different microalgae strains (Nannochloropsi sp., Nannochloropsis oculata (Droop) Hibberd, Nannochloris atomus Butcher and Isochrysis sp.) according to the culture phase and the carbon dioxide concentration. J World Aquacult Soc 35:401–411. doi:10.1111/j.1749-7345.2004.tb00104.x

    Article  Google Scholar 

  • Samotyja U, Malecka M (2007) Effects of blackcurrant seeds and rosemary extracts on oxidative stability of bulk and emulsified lipid substrates. Food Chem 104:317–323. doi:10.1016/j.foodchem.2006.11.046

    Article  CAS  Google Scholar 

  • Seguin P, Turcotte P, Tremblay G, Pageau D, Liu W (2009) Tocopherols concentration and stability in early maturing soybean genotypes. Agron J 101:1153–1159. doi:10.2134/agronj2009.0140

    Article  CAS  Google Scholar 

  • Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100. doi:10.1126/science.282.5396.2098

    Article  PubMed  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. In: Packer L (ed) Oxidants and antioxidants Part A. Methods in enzymology. Academic Press, U.S.A. 299:152–178. doi:10.1016/S0076-6879(99)99017-1

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi:10.1263/jbb.101.87

    Article  PubMed  CAS  Google Scholar 

  • Sultana B, Anwara F, Przybylsk R (2007) Antioxidant potential of corncob extracts for stabilization of corn oil subjected to microwave heating. Food Chem 104:997–1005. doi:10.1016/j.foodchem.2006.12.061

    Article  CAS  Google Scholar 

  • Tsimidou M, Papadopoulos G, Boskou D (1992) Phenolic compounds and stability of virgin olive oil—part I. Food Chem 45:141–144. doi:10.1002/jsfa.4097

    Article  CAS  Google Scholar 

  • Vazhappilly R, Chen F (1998) Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Am Oil Chem Soc 75:393–397. doi:10.1007/s11746-998-0057-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Council of Agriculture (97AS-3.1.3-AI-A2), Taiwan, Republic of China. We are very grateful to Dr. Pei-Lan Tsou of Grand Valley State University for her valuable suggestions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Lin Lee or Fang-Sheng Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 283 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YL., Chuang, YC., Su, HM. et al. Freeze-dried microalgae of Nannochloropsis oculata improve soybean oil's oxidative stability. Appl Microbiol Biotechnol 97, 9675–9683 (2013). https://doi.org/10.1007/s00253-013-5183-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5183-4

Keywords

Navigation