Skip to main content
Log in

Mineralization of 4-fluorocinnamic acid by a Rhodococcus strain

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A bacterial strain capable of aerobic degradation of 4-fluorocinnamic acid (4-FCA) as the sole source of carbon and energy was isolated from a biofilm reactor operating for the treatment of 2-fluorophenol. The organism, designated as strain S2, was identified by 16S rRNA gene analysis as a member of the genus Rhodococcus. Strain S2 was able to mineralize 4-FCA as sole carbon and energy source. In the presence of a conventional carbon source (sodium acetate [SA]), growth rate of strain S2 was enhanced from 0.04 to 0.14 h−1 when the culture medium was fed with 0.5 mM of 4-FCA, and the time for complete removal of 4-FCA decreased from 216 to 50 h. When grown in SA-supplemented medium, 4-FCA concentrations up to 1 mM did not affect the length of the lag phase, and for 4-FCA concentrations up to 3 mM, strain S2 was able to completely remove the target fluorinated compound. 4-Fluorobenzoate (4-FBA) was transiently formed in the culture medium, reaching concentrations up to 1.7 mM when the cultures were supplemented with 3.5 mM of 4-FCA. Trans,trans-muconate was also transiently formed as a metabolic intermediate. Compounds with molecular mass compatible with 3-carboxymuconate and 3-oxoadipate were also detected in the culture medium. Strain S2 was able to mineralize a range of other haloorganic compounds, including 2-fluorophenol, to which the biofilm reactor had been exposed. To our knowledge, this is the first time that mineralization of 4-FCA as the sole carbon source by a single bacterial culture is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgments

We thank Prof. Dick B. Janssen for helpful discussions and for revising the manuscript. C.L. Amorim and M.F. Carvalho wish to acknowledge a research grant from Fundação para a Ciência e Tecnologia (FCT), Portugal (Ref. SFRH/BD/47109/2008 and SFRH/BPD/44670/2008, respectively) and Fundo Social Europeu (Programa Operacional Potencial Humano (POPH), Quadro de Referência Estratégico Nacional (QREN))). This work was supported by FCT through the projects PTDC/BIO/67306/2006, PTDC/EBB-EBI/111699/2009 and PEst-OE/EQB/LA0016/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula M. L. Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amorim, C.L., Ferreira, A.C.S., Carvalho, M.F. et al. Mineralization of 4-fluorocinnamic acid by a Rhodococcus strain. Appl Microbiol Biotechnol 98, 1893–1905 (2014). https://doi.org/10.1007/s00253-013-5149-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5149-6

Keywords

Navigation