Skip to main content
Log in

The safety assessment of Pythium irregulare as a producer of biomass and eicosapentaenoic acid for use in dietary supplements and food ingredients

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6, n-3), eicosapentaenoic acid (EPA, 20:5, n-3), and arachidonic acid (ARA, 20:4 n-6), have multiple beneficial effects on human health and can be used as an important ingredient in dietary supplements, food, feed and pharmaceuticals. A variety of microorganisms has been used for commercial production of these fatty acids. The microorganisms in the Pythium family, particularly Pythium irregulare, are potential EPA producers. The aim of this work is to provide a safety assessment of P. irregulare so that the EPA derived from this species can be potentially used in various commercial applications. The genus Pythium has been widely recognized as a plant pathogen by infecting roots and colonizing the vascular tissues of various plants such as soybeans, corn and various vegetables. However, the majority of the Pythium species (including P. irregulare) have not been reported to infect mammals including humans. The only species among the Pythium family that infects mammals is P. insidiosum. There also have been no reports showing P. irregulare to contain mycotoxins or cause potentially allergenic responses in humans. Based on the safety assessment, we conclude that P. irregulare can be considered a safe source of biomass and EPA-containing oil for use as ingredients in dietary supplements, food, feed and pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad ZG, Louws FJ, Fernandez GE (1999) Rhizoctonia and Pythium species associated with black root rot of strawberries in North Carolina. Phytopathology 89:S1

    Article  Google Scholar 

  • Abbasi PA, Lazarovits G (2006) Effect of soil application of AG3 phosphonate on the severity of clubroot of bok choy and cabbage caused by Plasmodiophora brassicae. Plant Dis 90:1517–1522

    Article  CAS  Google Scholar 

  • Aldahadha AM, Warwick NWM, Backhouse D (2012) Effects of Pythium irregulare and root pruning on water-use efficiency of hydroponically grown wheat under PEG-induced drought. J Phytopathol 160:397–403

    Article  Google Scholar 

  • Athalye SK, Garcia RA, Wen ZY (2009) Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J Agri Food Chem 57:2739–2744

    Article  CAS  Google Scholar 

  • Bala K, Robideau GP, Desaulniers N, de Cock AWAM, Levesque CA (2010) Taxonomy, DNA barcoding and phylogeny of three new species of Pythium from Canada. Persoonia 25:22–31

    Article  PubMed  CAS  Google Scholar 

  • Belarbi EH, Molina E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529

    Article  PubMed  CAS  Google Scholar 

  • Biesbroc J, Hendrix FF (1967) A taxonomic study of Pythium irregulare and related species. Mycologia 59:943–952

    Article  Google Scholar 

  • Blunt TD, Ambruzs B, Brown W (2001) Re-emergence of red root rot of corn in Colorado. Phytopathology 91:S9

    Google Scholar 

  • Bracco U, Deckelbaum RJ (1992) Polyunsaturated fatty acid in human nutrition. Raven Press, London

    Google Scholar 

  • Brenna JT, Salem NJ, Sinclair AJ, Cunnane SC (2009) Alpha-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fat Acids 80:85–91

    Article  CAS  Google Scholar 

  • Broders KD, Lipps PE, Ellis ML, Dorrance AE (2009) Pythium delawarii—a new species isolated from soybean in Ohio. Mycologia 101:232–238

    Article  PubMed  CAS  Google Scholar 

  • Burgess LW, Knight TE, Tesoriero L, Phan HT (2008) Fungi, humans and animals: health issues. In: Diagnostic manual for plant diseases in Vietnam. ACIAR (Australian Centre for International Agricultural Research), Canberra, Australia. Pp 162–170

  • Chen WD (1992) Restriction-fragment-length-polymorphisms in enzymatically amplified ribosomal DNAs of 3 Heterothallic Pythium species. Phytopathology 82:1467–1472

    Article  CAS  Google Scholar 

  • Cheng MH, Walker TH, Hulbert GJ, Raman DR (1999) Fungal production of eicosapentaenoic and arachidonic acids from industrial waste streams and crude soybean oil. Biores Technol 67:101–110

    Article  CAS  Google Scholar 

  • Cohen Z, Ratledge C (2010) Single cell oils, 2nd edn. AOCS Press, Urbana

    Google Scholar 

  • Dodds PN, Rafiqi M, Gan PHP, Hardham AR, Jones DA, Ellis JG (2009) Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance. New Phytol 183:993–999

    Article  PubMed  Google Scholar 

  • Dong M, Walker TH (2008) Addition of polyunsaturated fatty acids to canola oil by fungal conversion. Enzyme Micro Technol 42:514–520

    Article  CAS  Google Scholar 

  • Dorrance AE, Berry SA, Bowen P, Lipps PE (2004) Characterization of Pythium spp. from three Ohio fields for pathogenicity on corn and soybean and metalaxyl sensitivity. Plant Health Progress 2:1–7

    Google Scholar 

  • Eroshin VK, Satroutdinov AD, Dedyukhina EG, Chistyakova TI (2000) Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Proc Biochem 35:1171–1175

    Article  CAS  Google Scholar 

  • FDA (2011) GRAS Notice Inventory (GRN No. 355), Eicosapentaenoic acid (EPA)-rich triglyceride oil from Yarrowia lipolytica. http://www.accessdata.fda.gov/scripts/fcn/fcnDetailNavigation.cfm?rpt=graslisting&id=355Forbes. Accessed 28 May 2013

  • Forbes GA, Davet P (1990) Characterization and pathogenicity on seedlings of Pythium species Isolated from soybean roots in the toulouse area. Agronomie 10:825–830

    Article  Google Scholar 

  • Gaastra W, Lipman LJA, de Cock AWAM, Exel TK, Pegge RBG, Scheurwater J, Vilela R, Mendoza L (2010) Pythium insidiosum: an overview. Vet Microbiol 146:1–16

    Article  PubMed  Google Scholar 

  • Gandhi SR, Weete JD (1991) Production of the polyunsaturated fatty-acids arachidonic-acid and eicosapentaenoic acid by the fungus Pythium-ultimum. J Gen Microbiol 137:1825–1830

    Article  PubMed  CAS  Google Scholar 

  • Garzon CD, Yanez JM, Moorman GW (2007) Pythium cryptoirregulare, a new species within the P-irregulare complex. Mycologia 99:291–301

    Article  PubMed  CAS  Google Scholar 

  • GBIF (2008). Biodiversity Information Facility. http://data.gbif.org/species/Global; Accessed 28 May 2013

  • Gibson RA, Muhlhausler B, Makrides M (2011) Conversion of linoleic acid and alpha-linolenic aicd to long-chain polyunsaturated fatty acid (LCPUFAs), with a focus on pregnency, lactation and the first 2 years of life. Matern Child Nutr 7(suppl 2):17–26

    Article  PubMed  Google Scholar 

  • Gill I, Valivety R (1997) Polyunsaturated fatty acids: Part 1. Occurrence, biological activities and applications. Trends Biotechnol 15:401–409

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Barrow CJ, Puri M (2012) Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 30:1733–1745

    Article  PubMed  CAS  Google Scholar 

  • Grammatikos SI, Subbaiah PV, Victor TA, Miller WM (1994) Diverse effects of essential (N-6 and N-3) fatty-acids on cultured-cells. Cytotechnology 15:31–50

    Article  PubMed  CAS  Google Scholar 

  • Heath MC (1997) Signalling between pathogenic rust fungi and resistant or susceptible host plants. Ann Bot 80:713–720

    Article  CAS  Google Scholar 

  • Herrero ML, Hermansen A, Elen ON (2003) Occurrence of Pythium spp. and phytophthora spp. in Norwegian greenhouses and their pathogenicity on cucumber seedlings. J Phytopathol Phytopath Z 151:36–41

    Article  Google Scholar 

  • Ivanov DA, Bernards MA (2012) Ginsenosidases and the pathogenicity of Pythium irregulare. Phytochemistry 78:44–53

    Article  PubMed  CAS  Google Scholar 

  • Jiang YN, Haudenshield JS, Hartman GL (2012) Characterization of Pythium spp. from soil samples in Illinois. Can J Plant Pathol Rev Can Phytopathol 34:448–454

    Article  Google Scholar 

  • Kabak B, Dobson ADW (2009) Biological strategies to counteract the effects of mycotoxins. J Food Protect 72:2006–2016

    CAS  Google Scholar 

  • Koike Y, Cai HJ, Higashiyama K, Fujikawa S, Park EY (2001) Effect of consumed carbon to nitrogen ratio of mycelial morphology and arachidonic acid production in cultures of Mortierella alpine. J Biosci Bioeng 91:382–389

    PubMed  CAS  Google Scholar 

  • Lan W, Qin W, Yu L (2002) Effect of glutamate on arachidonic acid production from Mortierella alpine. Lett Appl Microbiol 35:357–360

    Article  PubMed  CAS  Google Scholar 

  • Levesque CA, de Cock AWAM (2004) Molecular phylogeny and taxonomy of the genus Pythium. Mycol Res 108:1363–1383

    Article  PubMed  CAS  Google Scholar 

  • Li DW, Yang CS (2004) Fungal contamination as a major contributor to sick building syndrome. Adv Appl Microbiol 55:31–112

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Garcia RA, Piazza GJ, Wen ZY (2011) Nonfeed application of rendered animal proteins for microbial production of eicosapentaenoic acid by the fungus Pythium irregulare. J Agri Food Chem 59:11990–11996

    Article  CAS  Google Scholar 

  • Liang Y, Zhao XF, Strait M, Wen ZY (2012) Use of dry-milling derived thin stillage for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. Biores Technol 111:404–409

    Article  CAS  Google Scholar 

  • Lio JY, Wang T (2013) Pythium irregulare fermentation to produce arachidonic acid (ARA) and eicosapentaenoic acid (EPA) using soybean processing co-products as substrates. Appl Biochem Biotechnol 169:595–611

    Article  PubMed  CAS  Google Scholar 

  • Mao W, Carroll RB, Whittington DP (1993) Assessment of soil populations of Phoma, Pythium irregulare and Fusarium sp. associated with red root rot of corn in Delaware. Phytopathology 83:1407

    Google Scholar 

  • Masih I, Paul B (2003) Pythium irregulare sp. nov., isolated from the Canary Islands, its taxonomy, its region of rDNA, and comparison with related species. Curr Microbiol 47:309–313

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto C, Kageyama K, Suga H, Hyakumachi M (2000) Intraspecific DNA polymorphisms of Pythium irregulare. Mycol Res 104:1333–1341

    Article  CAS  Google Scholar 

  • Mazzola M, Andrews PK, Reganold JP, Levesque CA (2002) Frequency, virulence, and metalaxyl sensitivity of Pythium spp. isolated from apple roots under conventional and organic production systems. Plant Dis 86:669–675

    Article  Google Scholar 

  • Mazzola M, Brown J, Zhao XW, Izzo AD, Fazio G (2009) Interaction of brassicaceous seed meal and apple rootstock on recovery of Pythium spp. and Pratylenchus penetrans from roots grown in replant soils. Plant Dis 93:51–57

    Article  Google Scholar 

  • Mazzola M, Manici LM (2012) Apple replant disease: role of microbial ecology in cause and control. Annu Rev Phytopathol 50:45–65

    Article  PubMed  CAS  Google Scholar 

  • Mendes A, Reis A, Vasconcelos R, Guerra P, da Silva TL (2009) Crypthecodinium cohnii with emphasis on DHA production: a review. J Appl Phycol 21:199–214

    Article  Google Scholar 

  • McLeod A, Botha WJ, Meitz JC, Spies CFJ, Tewoldemedhin YT, Mostert L (2009) Morphological and phylogenetic analyses of Pythium species in South Africa. Mycol Res 113:933–951

    Article  PubMed  Google Scholar 

  • Mojdehi H, Singleton LL, Melouk HA, Waller GR (1990) Reproduction of symptoms of a root disease of wheat by toxic metabolites produced by 2 Pythium species and their partial characterization. J Phytopathol Phytopath Z 128:246–256

    Article  CAS  Google Scholar 

  • Mojdehi H, Singleton LL (2000) Reaction of wheat varieties to infection by Pythium arrhenomanes or its toxic metabolite(s). J Agric Sci Technol 1:33–39

    Google Scholar 

  • Moorman GW, Kang S, Geiser DM, Kim SH (2002) Identification and characterization of Pythium species associated with greenhouse floral crops in Pennsylvania. Plant Dis 86:1227–1231

    Article  Google Scholar 

  • Nettleton JA (1995) Omega-3 fatty acids and health. Chapman & Hall, New York

    Book  Google Scholar 

  • Olaya G, Heidel T, Abad G, Abad J, Watrin C (2006) Pythium species associated with corn seedling diseases in the USA, pathogenicity and sensitivity to mefenoxam and azoxystrobin. Phytopathology 96:S87

    Article  Google Scholar 

  • Paul B (2000) ITS1 region of the rDNA of Pythium megacarpum sp. nov., its taxonomy, and its comparison with related species. FEMS Microbiol Lett 186:229–233

    Article  PubMed  CAS  Google Scholar 

  • Paul B (2003) Characterisation of a new species of Pythium isolated from a wheat field in northern France and its antagonism towards Botrytis cinerea causing the grey mould disease of the grapevine. FEMS Microbiol Lett 224:215–223

    Article  PubMed  CAS  Google Scholar 

  • Paulitz TC, Adams K (2003) Composition and distribution of Pythium communities in wheat fields in eastern Washington state. Phytopathology 93:867–873

    Article  PubMed  CAS  Google Scholar 

  • Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21:400–407

    Article  PubMed  CAS  Google Scholar 

  • Rizvi SSA, Yang XB (1996) Fungi associated with soybean seedling disease in Iowa. Plant Dis 80:57–60

    Article  Google Scholar 

  • Robertson GI (1976) Pythium species in market gardens and their pathogenicity to 14 vegetable crops. New Zeal J Agri Res 19:97–102

    Article  Google Scholar 

  • Ryan AS, Zeller S, Nelson EB (2010) Safety evaluation o fsingle cell oils and the regulatory requirements for use as food ingredients. In: Cohen Z, Ratledge C (eds) Single cell oils, 2nd edn. AOCS Press, Urbana, pp 317–350

    Google Scholar 

  • Schurko AM, Mendoza L, Levesque CA, Desaulniers NL, de Cock WAM, Klassen GR (2003) A molecular phylogeny of Pythium insidiosum. Mycol Res 107:537–544

    Article  PubMed  CAS  Google Scholar 

  • Serrano Y, Gomez JM, Melero-Vara JM, Abad Z (2009) Pythium species causing green bean diseases in plastic greenhouses in southeast Spain. Phytopathology 99:S118

    Google Scholar 

  • Shimizu S, Kawashima H, Shinmen Y, Akimoto K, Yamada H (1988) Production of eicosapentaenoic acid by mortierella fungi. J Ameri Oil Chem Soc 65:1455–1459

    Article  CAS  Google Scholar 

  • Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70:560S–569S

    PubMed  CAS  Google Scholar 

  • Smither ML, Jones AL (1989) Pythium species associated with sour cherry and the effect of P. irregulare on the growth of mahaleb cherry. Can J Plant Pathol Rev Can Phytopathol 11:1–8

    Article  Google Scholar 

  • Stredansky M, Conti E, Salaris A (2000) Production of polyunsaturated fatty acids by Pythium ultimum in solid-state cultivation. Enzyme Micro Technol 26:304–307

    Article  CAS  Google Scholar 

  • Tewoldemedhin YT, Mazzola M, Botha WJ, Spies CFJ, McLeod A (2011) Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa. Eur J Plant Pathol 130:215–229

    Article  CAS  Google Scholar 

  • Vanderplaatsniterink AJ (1981) Monograph of the genus Pythium. Stud Mycol 21:1–242

    Google Scholar 

  • Voegele RT, Mendgen K (2003) Rust haustoria: nutrient uptake and beyond. New Phytol 159:93–100

    Article  CAS  Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    Article  CAS  Google Scholar 

  • Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  PubMed  CAS  Google Scholar 

  • Zhu M, Yu L-J, Wu Y-X (2003) An inexpensive medium for production of arachidonic acid by Mortierella alpine. J Ind Microbiol Biotechnol 30:75–79

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyou Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Roe, C.L. & Wen, Z. The safety assessment of Pythium irregulare as a producer of biomass and eicosapentaenoic acid for use in dietary supplements and food ingredients. Appl Microbiol Biotechnol 97, 7579–7585 (2013). https://doi.org/10.1007/s00253-013-5114-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5114-4

Keywords

Navigation