Skip to main content

Advertisement

Log in

Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two genes from Zymomonas mobilis that are responsible for ethanol production, pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhII), were heterologously expressed in the Gram-positive bacterium Streptomyces lividans TK24. An examination of carbon distribution revealed that a significant portion of carbon metabolism was switched from biomass and organic acid biosynthesis to ethanol production upon the expression of pdc and adhII. The recombinant S. lividans TK24 produced ethanol from glucose with a yield of 23.7 % based on the carbohydrate consumed. The recombinant was able to produce ethanol from xylose, l-arabinose, mannose, l-rhamnose, galactose, ribose, and cellobiose with yields of 16.0, 25.6, 21.5, 33.6, 30.6, 14.6, and 33.3 %, respectively. Polymeric substances such as starch and xylan were directly converted to ethanol by the recombinant with ethanol yields of 18.9 and 8.8 %, respectively. The recombinant S. lividans TK24/Tpet developed in this study is potentially a useful microbial resource for ethanol production from various sources of biomasses, especially microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banerjee N, Bhatnagar R, Viswanathan L (1981) Development of resistance in Saccharomyces cerevisiae against inhibitory effects of browning reaction products. Enzyme Microb Technol 3:24–28

    Article  CAS  Google Scholar 

  • Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microorganism quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:79–99

    Article  CAS  Google Scholar 

  • Carlsson AS, van Beilen JB, Möller R, Clayton D (2007) Micro-and macro-algae: utility for industrial applications. In: Bowles D (ed) Outputs from the EPOBIO project. CPL Press, Berks, pp 9–11

    Google Scholar 

  • Chen J, Zhang W, Tan L, Wang Y, He G (2009) Optimization of metabolic pathways for bioconversion of lignocellulose to ethanol through genetic engineering. Biotechnol Adv 27:593–598

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Clark TA, Mackie KL (1984) Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J Chem Technol Biotechnol 34:101–110

    Article  Google Scholar 

  • Cochrane VW, Conn JE (1947) The growth and pigmentation of Actinomyces coelicolor as affected by cultural conditions. J Bacteriol 54:213–218

    CAS  Google Scholar 

  • Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408

    Article  CAS  Google Scholar 

  • Eksteen JM, van Rensburg P, Otero RRC, Pretorius IS (2003) Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the α-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol Bioeng 84:639–646

    Article  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  Google Scholar 

  • Gold RS, Meagher MM, Tong S, Hutkins RW, Conway T (1996) Cloning and expression of the Zymomonas mobilis “production of ethanol” genes in Lactobacillus casei. Curr Microbiol 33:256–260

    Article  CAS  Google Scholar 

  • Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JHD, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci 108:504–509

    Article  CAS  Google Scholar 

  • Hoppner TC, Doelle HW (1983) Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production. Eur J Appl Microbiol Biotechnol 17:152–157

    Article  CAS  Google Scholar 

  • Ingram LO, Conway T (1988) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol 54:397–404

    CAS  Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    CAS  Google Scholar 

  • Jaurin B, Granstrom M (1989) Beta-glucosidase genes of naturally occurring and cellulolytic Streptomyces species: characterization of two such genes in Streptomyces lividans. Appl Microbiol Biotechnol 30:502–508

    Article  CAS  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Sterptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Kim NJ, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469

    Article  CAS  Google Scholar 

  • Kluepfel D, Shareck F, Mondou F, Morosoli R (1986) Characterization of cellulase and xylanase activities of Streptomyces lividans. Appl Microbiol Biotechnol 24:230–234

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Liu S, Dien BS, Nichols NN, Bischoff KM, Hughes SR, Cotta MA (2007) Coexpression of pyruvate decarboxylase and alcohol dehydrogenase genes in Lactobacillus brevis. FEMS Microbiol Lett 274:291–297

    Article  CAS  Google Scholar 

  • Liu S, Nichols NN, Dien BS, Cotta MA (2006) Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production. J Ind Microbiol Biotechnol 33:1–7

    Article  Google Scholar 

  • Liu S, Qureshi N (2009) How microbes tolerate ethanol and butanol. New Biotechnol 26:117–121

    Article  CAS  Google Scholar 

  • Mackay SJ (1977) Improved enumeration of Streptomyces spp. on a starch casein salt medium. Appl Environ Microbiol 33:227–230

    CAS  Google Scholar 

  • Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W (2006) Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol 71:23–33

    Article  CAS  Google Scholar 

  • Mihoc A, Kluepfel D (1990) Purification and characterization of a β-glucosidase from Streptomyces lividans 66. Can J Microbiol 36:53–56

    Article  CAS  Google Scholar 

  • Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26

    Article  Google Scholar 

  • Morosoli R, Bertrand JL, Mondou F, Shareck F, Kluepfel D (1986) Purification and properties of a xylanase from Streptomyces lividans. Biochem J 239:587–592

    CAS  Google Scholar 

  • Navarro AR (1994) Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae: mathematical models. Curr Microbiol 29:87–90

    Article  CAS  Google Scholar 

  • Rxomero S, Merino E, Bolı-var F, Gosset G, Martinez A (2007) Metabolic engineering of Bacillus subtilis for ethanol production:lactate dehydrogenase plays a key role in fermentative metabolism. Appl Environ Microbiol 73:5190–5198

    Article  Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci 105:13769–13774

    Article  CAS  Google Scholar 

  • Stülke J, Hillen W (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol 2:195–201

    Article  Google Scholar 

  • Takaya T, Sugimoto Y, Fuwa H, Wako K (1979) Degradation of starch granules by alpha-amylase of Streptomyces precox NA-273. Starch/Stärke 31:205–208

    Article  CAS  Google Scholar 

  • Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (no. 2011-0027563).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Keun Chang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 484 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.S., Chi, WJ., Hong, SK. et al. Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans . Appl Microbiol Biotechnol 97, 6089–6097 (2013). https://doi.org/10.1007/s00253-013-4951-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4951-5

Keywords

Navigation