Skip to main content
Log in

Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The primary explosive found in most land mines, 2,4,6-trinitrotoluene (2,4,6-TNT), is often accompanied by 2,4-dinitrotoluene (2,4-DNT) and 1,3-dinitrobenzene (1,3-DNB) impurities. The latter two compounds, being more volatile, have been reported to slowly leak through land mine covers and permeate the soil under which they are located, thus serving as potential indicators for buried land mines. We report on the construction of genetically engineered Escherichia coli bioreporter strains for the detection of these compounds, based on a genetic fusion between two gene promoters, yqjF and ybiJ, to either the green fluorescent protein gene GFPmut2 or to Photorhabdus luminescens bioluminescence luxCDABE genes. These two gene promoters were identified by exposing to 2,4-DNT a comprehensive library of about 2,000 E. coli reporter strains, each harboring a different E. coli gene promoter controlling a fluorescent protein reporter gene. Both reporter strains detected 2,4-DNT in an aqueous solution as well as in vapor form or when buried in soil. Performance of the yqjF-based sensor was significantly improved in terms of detection threshold, response time, and signal intensity, following two rounds of random mutagenesis in the promoter region. Both yqjF-based and ybiJ-based reporters were also induced by 2,4,6-TNT and 1,3-DNB. It was further demonstrated that both 2,4,6-TNT and 2,4-DNT are metabolized by E. coli and that the actual induction of both yqjF and ybiJ is caused by yet unidentified degradation products. This is the first demonstration of an E. coli whole-cell sensor strain for 2,4-DNT and 2,4,6-TNT, constructed using its own endogenous sensing elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol (2): 1–11

  • Behzadian F, Barjeste H, Hosseinkhani S, Zarei A (2011) Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds. Curr Microbiol 62(2):690–696

    Article  CAS  PubMed  Google Scholar 

  • Belkin S (1998) A panel of stress-responsive luminous bacteria for monitoring wastewater toxicity. Methods Mol Biol 102:247–258

    CAS  PubMed  Google Scholar 

  • Belkin S, Smulski D, Dadon S, Vollmer A, Van Dyk T, Larossa R (1997) A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants. Water Res 31(12):3009–3016

    Article  CAS  Google Scholar 

  • Blattner F, Plunkett G, Bloch C, Perna N, Burland V, Riley M, Collado-Vides J, Glasner J, Rode C, Mayhew G, Gregor J, Davis N, Kirkpatrick H, Goeden M, Rose D, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Burlage R, Youngblood T, Lamothe D (1998) Bioreporter bacteria for landmine detection. 0RNL report/CP-96972

  • Burlage R, Patek D, Everman K (1999) Method for detection of buried explosives using a biosensor. US Patent 5:972,638

    Google Scholar 

  • Cherepanov P, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Daley D, Rapp M, Granseth E, Melén K, Drew D, von Heijne G (2005) Global topology analysis of the Escherichia coli inner membrane proteome. Science 308(5726):1321–1323

    Article  CAS  PubMed  Google Scholar 

  • Datsenko K, Wanner B (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Las Heras A, Carreño C, De Lorenzo V (2008) Stable implantation of orthogonal sensor circuits in gram-negative bacteria for environmental release. Environ Microbiol 10(12):3305–3316

    Article  Google Scholar 

  • Frische T (2002) Screening for soil toxicity and mutagenicity using luminescent bacteria—a case study of the explosive 2,4,6-trinitrotoluene (TNT). Ecotoxicol Environ Saf 51(2):133–144

    Article  CAS  PubMed  Google Scholar 

  • Garmendia J, De Las Heras A, Galvão T, De Lorenzo V (2008) Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. Microb Biotechnol 1(3):236–246

    Article  CAS  PubMed  Google Scholar 

  • González-Pérez M, Van Dillewijn P, Wittich R, Ramos J (2007) Escherichia coli has multiple enzymes that attack TNT and release nitrogen for growth. Environ Microbiol 9(6):1535–1540

    Article  PubMed  Google Scholar 

  • Grant S, Jessee J, Bloom F, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87(12):4645–4649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Habib M (2007) Controlled biological and biomimetic systems for landmine detection. Biosens Bioelectron 23(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Hancock V, Vejborg R, Klemm P (2010) Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972, and UPEC strain CFT073: comparison of transcriptomes, growth and biofilm formation. Mol Genet Genomics 284(6):437–454

    Article  CAS  PubMed  Google Scholar 

  • Jenkins T, Grant C, Brar G, Thorne P, Schumacher P, Ranney T (1997) Sampling error associated with collection and analysis of soil samples at TNT-contaminated sites. Field Anal Chem Technol 1(3):151–163

    Article  Google Scholar 

  • Jenkins T, Leggett D, Miyares P, Walsh M, Ranney T, Cragin J, George V (2001) Chemical signatures of TNT-filled land mines. Talanta 54(3):501–513

    Article  CAS  PubMed  Google Scholar 

  • Jenkins T, Hewitt A, Grant C, Thiboutot S, Ampleman G, Walsh M, Ranney T, Ramsey C, Palazzo A, Pennington J (2006) Identity and distribution of residues of energetic compounds at army live-fire training ranges. Chemosphere 63(8):1280–1290

    Article  CAS  PubMed  Google Scholar 

  • Johnson G, Spain J (2003) Evolution of catabolic pathways for synthetic compounds: bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene. Appl Microbiol Biotechnol 62(2):110–123

    Article  CAS  PubMed  Google Scholar 

  • Khil P, Camerini-Otero R (2002) Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 44(1):89–105

    Article  CAS  PubMed  Google Scholar 

  • Leggett D, Cragin J, Jenkins T, Ranneyand T (2001) Release of explosive-related vapors from land mines. Cold Regions Research and Engineering Laboratory ERDC/CRREL TR-01-6

  • Li Y, Li F, Ho C, Liao V (2008) Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. Environ Pollut 152(1):123–129

    Article  CAS  PubMed  Google Scholar 

  • Lönneborg R, Brzezinski P (2011) Factors that influence the response of the LysR type transcriptional regulators to aromatic compounds. BMC Biochem 12(1):49

    Article  PubMed Central  PubMed  Google Scholar 

  • Lönneborg R, Varga E, Brzezinski P (2012) Directed evolution of the transcriptional regulator DntR: isolation of mutants with improved DNT-response. PLoS One 7(1):e29994

    Article  PubMed Central  PubMed  Google Scholar 

  • MacDonald J, Lockwood J, McFee J, Altshuler T, Broach T, Carin L, Harmon R, Rappaport C, Scott W, Weaver R (2003) Innovative mine detection systems. Altern Landmine Detect Chapter 2:15–47

    Google Scholar 

  • Marrichi M, Camacho L, Russell D, DeLisa M (2008) Genetic toggling of alkaline phosphatase folding reveals signal peptides for all major modes of transport across the inner membrane of bacteria. J Biol Chem 283(50):35223–35235

    Article  CAS  PubMed  Google Scholar 

  • McHugh J, Rodríguez-Quiñones F, Abdul-Tehrani H, Svistunenko D, Poole R, Cooper C, Andrews S (2003) Global iron-dependent gene regulation in Escherichia coli. J Biol Chem 278(32):29478–29486

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay P, Zheng M, Bedzyk L, LaRossa R, Storz G (2004) Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci U S A 101(3):745–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neuwoehner J, Schofer A, Erlenkaemper B, Steinbach K, Hund-Rinke K, Eisentraeger A (2007) Toxicological characterization of 2,4,6-trinitrotoluene, its transformation products, and two nitramine explosives. Environ Toxicol Chem 26(6):1090–1099

    Article  CAS  PubMed  Google Scholar 

  • Nishino S, Paoli G, Spain J (2000) Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol 66(5):2139–2147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noguera D, Freedman D (1996) Reduction and acetylation of 2,4-dinitrotoluene by a Pseudomonas aeruginosa strain. Appl Environ Microbiol 62(7):2257–2263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radhika V, Proikas-Cezanne T, Jayaraman M, Onesime D, Ha J, Dhanasekaran D (2007) Chemical sensing of DNT by engineered olfactory yeast strain. Nat Chem Biol 3(6):325–330

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Collins G, Pruden A (2009) Differential gene expression in Escherichia coli following exposure to nonthermal atmospheric pressure plasma. J Appl Microbiol 107(5):1440–1449

    Article  CAS  PubMed  Google Scholar 

  • Smith R, D'Souza N, Nicklin S (2008) A review of biosensors and biologically-inspired systems for explosives detection. Analyst 133(5):571–584

    Article  CAS  PubMed  Google Scholar 

  • Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan J, Agathos S (2006) Aerobic growth of Escherichia coli with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source and evidence of TNT denitration by whole cells and cell-free extracts. Appl Environ Microbiol 72(12):7945–7948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sylvia J, Janni J, Klein J, Spencer K (2000) Surface-enhanced raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines. Anal Chem 72(23):5834–5840

    Article  CAS  PubMed  Google Scholar 

  • van der Meer J, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8(7):511–522

    Article  PubMed  Google Scholar 

  • Walsh M, Ranney T (1999) Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil using GC-ECD. Special Report 99–12, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH

  • Willardson B, Wilkins J, Rand T, Schupp J, Hill K, Keim P, Jackson P (1998) Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl Environ Microbiol 64(3):1006–1012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70(6):3566–3574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yagur-Kroll S, Bilic B, Belkin S (2010) Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation. Microb Biotechnol 3(3):300–310

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Wood T, Smets B (2005) Reductive transformation of TNT by Escherichia coli: pathway description. Appl Microbiol Biotechnol 67(3):397–404

    Article  CAS  PubMed  Google Scholar 

  • Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette M, Alon U (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3(8):623–628

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The help of Prof. Yoav Eichen from the Faculty of Chemistry, Technion, Israel, Prof. Aharon Agranat from Applied Physics, the Hebrew University, and their teams is gratefully acknowledged. Research was supported in part by the Minerva Center for Bio-Hybrid Complex Systems and by a Korean National Research Foundation grant to SB and Man Bock Gu, Korea University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimshon Belkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagur-Kroll, S., Lalush, C., Rosen, R. et al. Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 98, 885–895 (2014). https://doi.org/10.1007/s00253-013-4888-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4888-8

Keywords

Navigation