Skip to main content
Log in

Characterization of membrane-bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Gluconobacter oxydans, like all acetic acid bacteria, has several membrane-bound dehydrogenases, which oxidize a multitude of alcohols and polyols in a stereo- and regio-selective manner. Many membrane-bound dehydrogenases have been purified from various acetic acid bacteria, but in most cases without reporting associated sequence information. We constructed clean deletions of all membrane-bound dehydrogenases in G. oxydans 621H and investigated the resulting changes in carbon utilization and physiology of the organism during growth on fructose, mannitol, and glucose. Furthermore, we studied the substrate oxidation spectra of a set of strains where the membrane-bound dehydrogenases were consecutively deleted using a newly developed whole-cell 2,6-dichlorophenolindophenol (DCPIP) activity assay in microtiter plates. This allowed a detailed and comprehensive in vivo characterization of each membrane-bound dehydrogenase in terms of substrate specificity. The assays revealed that general rules can be established for some of the enzymes and extended the known substrate spectra of some enzymes. It was also possible to assign proteins whose purification and characterization had been reported previously, to their corresponding genes. Our data demonstrate that there are less membrane-bound dehydrogenases in G. oxydans 621H than expected and that the deletion of all of them is not lethal for the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M (1978) Purification and characterization of particulate alcohol dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 42(11):2045–2056

    Article  CAS  Google Scholar 

  • Adachi O, Shinagawa E, Matsushita K, Ameyama M (1980) Purification and characterization of membrane-bound aldehyde dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 44(3):503–515

    Article  CAS  Google Scholar 

  • Adachi O, Fujii Y, Ghaly MF, Toyama H, Shinagawa E, Matsushita K (2001) Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses. Biosci Biotechnol Biochem 65(12):2755–2762

    Article  CAS  Google Scholar 

  • Adlercreutz P (1989) Oxidation of trans - and cis −1,2-cyclohexanediol by Gluconobacter oxydans. Appl Microbiol Biotechnol 30(3):257–263

    Article  CAS  Google Scholar 

  • Ameyama M, Shinagawa E, Matsushita K, Adachi O (1981) D-Glucose dehydrogenase of Gluconobacter suboxydans: solubilization, purification and characterization. Agric Biol Chem 45(4):851–861

    Article  CAS  Google Scholar 

  • Arcus AC, Edson NL (1956) Polyol dehydrogenases. 2. The polyol dehydrogenases of Acetobacter suboxydans and Candida utilis. Biochem J 64(3):385–394

    CAS  Google Scholar 

  • Armstrong JM (1964) The molar extinction coefficient of 2,6-dichlorophenol indophenol. Biochim Biophys Acta 86:194–197

    Article  CAS  Google Scholar 

  • Bertrand G (1898) Recherches sur la production biochimique du sorbes. Annales de l'Institut Pasteur 6:385–399

    Google Scholar 

  • Bertrand G (1904) Sur un nouveau sucre des baies de sorbier. C R Acad Sei Paris 20:802–805

    Google Scholar 

  • Buchert J (1991) A xylose-oxidizing membrane-bound aldose dehydrogenase of Gluconobacter oxydans ATCC 621. J Biotechnol 18(1–2):103–113

    Article  CAS  Google Scholar 

  • Cleton-Jansen AM, Dekker S, van de Putte P, Goosen N (1991) A single amino acid substitution changes the substrate specificity of quinoprotein glucose dehydrogenase in Gluconobacter oxydans. Mol Gen Genet 229(2):206–212

    Article  CAS  Google Scholar 

  • Deppenmeier U, Hoffmeister M, Prust C (2002) Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 60(3):233–242

    Article  CAS  Google Scholar 

  • Dym O, Pratt EA, Ho C, Eisenberg D (2000) The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc Natl Acad Sci USA 97(17):9413–9418

    Article  CAS  Google Scholar 

  • Gatsos X, Perry AJ, Anwari K, Dolezal P, Wolynec PP, Likić VA, Purcell AW, Buchanan SK, Lithgow T (2008) Protein secretion and outer membrane assembly in Alphaproteobacteria. FEMS Microbiol Rev 32(6):995–1009

    Article  CAS  Google Scholar 

  • Greenfield S, Claus GW (1972) Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans. J Bacteriol 112(3):1295–1301

    CAS  Google Scholar 

  • Gupta A, Singh VK, Qazi GN, Kumar A (2001) Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol 3(3):445–456

    CAS  Google Scholar 

  • Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Matsushita K, Sakaki K (2009) Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol. Appl Environ Microbiol 75(24):7760–7766

    Article  CAS  Google Scholar 

  • Habe H, Fukuoka T, Morita T, Kitamoto D, Yakushi T, Matsushita K, Sakaki K (2010) Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans. Biosci Biotechnol Biochem 74(7):1391–1395

    Article  CAS  Google Scholar 

  • Hann RM, Tilden EB, Hudson CS (1938) The oxidation of sugar alcohols by Acetobacter suboxydans. J Am Chem Soc 60(5):1201–1203

    Article  CAS  Google Scholar 

  • Hölscher T, Görisch H (2006) Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J Bacteriol 188(21):7668–7676

    Article  Google Scholar 

  • Hölscher T, Weinert-Sepalage D, Görisch H (2007) Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H. Microbiology 153(Pt 2):499–506

    Article  Google Scholar 

  • Kondo K, Horinouchi S (1997) Characterization of the genes encoding the three-component membrane-bound alcohol dehydrogenase from Gluconobacter suboxydans and their expression in Acetobacter pasteurianus. Appl Environ Microbiol 63(3):1131–1138

    CAS  Google Scholar 

  • Krajewski V, Simic P, Mouncey NJ, Bringer S, Sahm H, Bott M (2010) Metabolic engineering of Gluconobacter oxydans: improvement of growth rate and growth yield from glucose by elimination of gluconate formation. Appl Environ Microbiol 76:4369–4376

    Article  CAS  Google Scholar 

  • Ma C, Gao C, Qiu J, Hao J, Liu W, Wang A, Zhang Y, Wang M, Xu P (2007) Membrane-bound L- and D-lactate dehydrogenase activities of a newly isolated Pseudomonas stutzeri strain. Appl Microbiol Biotechnol 77(1):91–98

    Article  CAS  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301

    Article  CAS  Google Scholar 

  • Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69(4):1959–1966

    Article  CAS  Google Scholar 

  • Meyer M, Schweiger P, Deppenmeier U (2012) Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4265-z

  • Peters B, Junker A, Brauer K, Mühlthaler B, Kostner D, Mientus M, Liebl W, Ehrenreich A (2013) Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans. Appl Microbiol Biotechnol 97:2521–2530

    Article  CAS  Google Scholar 

  • Prust C (2004) Entschlüsselung des Genoms von Gluconobacter oxydans 621H—einem Bakterium von industriellem Interesse. Ph.D. thesis, Georg-August-Universität zu Göttingen

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23(2):195–200

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Habor Laboratory Press, Cold Spring Habor

    Google Scholar 

  • Shinagawa E, Matsushita K, Adachi O, Ameyama M (1982) Purification and characterization of D-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. a. Agric Biol Chem 46(1):135–141

    Article  CAS  Google Scholar 

  • Shinagawa E, Matsushita K, Adachi O, Ameyama M (1984) D-Gluconate dehydrogenase, 2-keto-D-gluconate yielding, from Gluconobacter dioxyacetonicus: purification and characterization. Agric Biol Chem 48(6):1517–1522

    Article  CAS  Google Scholar 

  • Shinagawa E, Matsushita K, Toyama H, Adachi O (1999) Production of 5-keto-d-gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinone (PQQ)-dependent membrane-bound d-gluconate dehydrogenase. Journal of Molecular Catalysis B: Enzymatic 6(3):341–350

    Article  CAS  Google Scholar 

  • Soemphol W, Adachi O, Matsushita K, Toyama H (2008) Distinct physiological roles of two membrane-bound dehydrogenases responsible for D-sorbitol oxidation in Gluconobacter frateurii. Biosci Biotechnol Biochem 72(3):842–850

    Article  CAS  Google Scholar 

  • Toyama H, Soemphol W, Moonmangmee D, Adachi O, Matsushita K (2005) Molecular properties of membrane-bound FAD-containing D-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand. Biosci Biotechnol Biochem 69(6):1120–1129

    Article  CAS  Google Scholar 

  • Voss J, Ehrenreich A, Liebl W (2010) Characterization and inactivation of the membrane-bound polyol dehydrogenase in Gluconobacter oxydans DSM 7145 reveals a role in meso-erythritol oxidation. Microbiology 156:1890–1899

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Bundesministerium für Bildung und Forschung (BMBF) for funding this work in the framework of the GenoMik-Transfer initiative (FKZ: 0315632C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Ehrenreich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, B., Mientus, M., Kostner, D. et al. Characterization of membrane-bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains. Appl Microbiol Biotechnol 97, 6397–6412 (2013). https://doi.org/10.1007/s00253-013-4824-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4824-y

Keywords

Navigation