Skip to main content
Log in

Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The oleaginous yeast Rhodotorula glutinis has been known to be a potential feedstock for lipid production. In the present study, we investigated the enhancement of expression of malic enzyme (ME; NADP+ dependent; EC 1.1.1.40) from Mucor circinelloides as a strategy to improve lipid content inside the yeast cells. The 26S rDNA and 5.8S rDNA gene fragments isolated from Rhodotorula glutinis were used for homologous integration of ME gene into R. glutinis chromosome under the control of the constitutively highly expressed gene phosphoglycerate kinase 1 to achieve stable expression. We demonstrated that by increasing the expression of the foreign ME gene in R. glutinis, we successfully improved the lipid content by more than twofold. At the end of lipid accumulation phrase (96 h) in the transformants, activity of ME was increased by twofold and lipid content of the yeast cells was increased from 18.74 % of the biomass to 39.35 %. Simultaneously, there were no significant differences in fatty acid profiles between the wild-type strain and the recombinant strain. Over 94 % of total fatty acids were C16:0, C18:0, C16:1, C18:1, and C18:2. Our results indicated that heterologous expression of NADP+-dependent ME involved in fatty acid biosynthesis indeed increased the lipid accumulation in the oleaginous yeast R. glutinis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chaney AL, Marbach EP (1962) Modified reagents for the determination of ammonium and urea. Clin Chem 8:130–132

    CAS  Google Scholar 

  • Chang GG, Tong L (2003) Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry 42:12721–12733

    Article  CAS  Google Scholar 

  • Easterling ER, French WT, Hernandez R, Licha M (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresource Technol 100:356–361

    Article  CAS  Google Scholar 

  • Gong Z, Wang Q, Shen HW, Hu CM, Jin GJ, Zhao ZB (2012) Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresource Technol 117:20–24

    Article  CAS  Google Scholar 

  • Goodridge AG, Klautky SA, Fantozzi DA, Baillie RA, Hodnett DW,Chen WZ, Thurmond DC, Xu G, Roncero C (1996) Nutritional and hormonal regulation of expression of the gene for malic enzyme. Prog Nucleic Acid Re 52:89–122

    Article  CAS  Google Scholar 

  • Handke P, Lynch SA, Gill RT (2011) Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab Eng 13:28–37

    Article  CAS  Google Scholar 

  • Hill S, Winning B, Jenner H, Knorpp C, Leaver C (1996) Role of NAD+-dependent 'malic' enzyme and pyruvate dehydrogenase complex in leaf metabolism. Biochem Soc T 24:743–746

    CAS  Google Scholar 

  • Hsu RY, Lardy HA (1969) Malic enzyme. Methods Enzymol 13:230–235

    Article  CAS  Google Scholar 

  • Klabunde J, Kunze G, Gellissen G, Hollenberg CP (2003) Integration of heterologous genes in several yeast species using vectors containing a Hansenula Polymorpha-derived rDNA-targeting element. FEMS yeast Res 4:185–193

    Article  CAS  Google Scholar 

  • Li YH, Adams IP, Wynn JP (2005) Cloning and characterization of a gene encoding a malic enzyme involved in anaerobic growth in Mucor circinelloides. Mycol Res 109:461–468

    Article  CAS  Google Scholar 

  • Liu B, Zhao ZB (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82:775–780

    Article  CAS  Google Scholar 

  • Lopes TS, Klootwijk J, Veenstra AE, van der Aar PC, van Heerikhuizen H, Raue HA, Planta RJ (1989) High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression. Gene 79:199–206

    Article  CAS  Google Scholar 

  • Lu XF, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: Implications for biodiesel production. Metab Eng 10:333–339

    Article  CAS  Google Scholar 

  • Luo XM (1995) Cloning and characterization of three Aspergillus niger promoters. Gene 163:127–131

    Article  CAS  Google Scholar 

  • Maria CR, Rosa R, Antonio RN (2002) Invertase from a strain of Rhodotorula glutinis. Phytochemistry 61:605–609

    Article  Google Scholar 

  • Meng X, Yang JM, Cao YJ, Li LZ, Jiang XL, Xu X, Liu W, Xian M, Zhang YW (2011) Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. J Ind Microbiol Biotechnol 38:919–925

    Article  CAS  Google Scholar 

  • Meng X, Yang JM, Xu X, Zhang L, Nie QJ, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energ 34:1–5

    Article  Google Scholar 

  • Misra S, Grosh A, Dutta J (1984) Production and composition of microbial fat from Rhodotorula glutinis. J Sci Food Agric 35:59–65

    Article  CAS  Google Scholar 

  • Moreadith RW, Lehninger AL (1984) The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. Journal of Biol Chem 259:6215–6221

    CAS  Google Scholar 

  • Ratledge C (1979) Resources conservation by novel biological processes. I Grow fats from wastes. Chem Soc Rev 8:283–296

    Article  CAS  Google Scholar 

  • Ratledge C, Wynn JP (2000) Understanding microbial obesity. SIM News 50:181–185

    Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  CAS  Google Scholar 

  • Rodriguez-Frometa RA, Gutierrez A, Torres-Martinez S, Garre V (2012) Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4432-2

  • Rose A, Harrison J (1970) Rhodotorula glutinis, fat synthesizing yeast. Yeast 3:433

    Google Scholar 

  • Ruenwai R, Cheevadhanarak S, Laoteng K (2009) Overexpression of acetyl-CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha. Mol Biotechnol 42:327–332

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346

    Article  CAS  Google Scholar 

  • Scopione RC, de Camargo SS, Astolfi-Filho S, Schenberg ACG (1993) A new promoter probe vector for Saccharomyces cerevisiae using fungal glucoamylase cDNA as the reporter gene. Yeast 9:599–605

    Article  Google Scholar 

  • Song YD, Wynn JP, Li YH, Grantham D, Ratledge C (2001) A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides. Microbiology 147:1507–1515

    CAS  Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) High frequency transformation of yeast: autonomous replication of hybrid DNA molecules. PNAS 76:1035–1039

    Article  CAS  Google Scholar 

  • Tamano K, Bruno KS, Karagiosis SA, Cully DE, Deng S, Collett JR, Umemura M, Koike H, Baker SE, Machida M (2012) Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4193-y

  • Visser H, Vreugdenhil S, Bont JAM, Verdoes JC (2000) Cloning and characterization of epoxide hydrolase-encoding gene from Rhodotorula glutinis. Appl Microbiol Biotechnol 53:415–419

    Article  CAS  Google Scholar 

  • Vongsangnak W, Zhang YT, Chen W, Ratledge C, Song YD (2012) Annotation and analysis of malic enzyme genes encoding for multiple isoforms in the fungus Mucor circinelloides CBS 277.49. Biotechnol Lett 34:941–947

    Article  CAS  Google Scholar 

  • Wynn JP, Hamid AA, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145:1911–1917

    Article  CAS  Google Scholar 

  • Wynn JP, Kendrick A, Ratledge C (1997) Sesamol as an inhibitor of growth and lipid metabolism in Mucor circinelloides via its action on malic enzyme. Lipids 32:605–610

    Article  CAS  Google Scholar 

  • Wynn JP, Ratledge C (1997) Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology 143:253–257

    Article  CAS  Google Scholar 

  • Wynn JP, Ratledge C (2000) Evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongase. Microbiology 146:2325–2331

    CAS  Google Scholar 

  • Yech Y (1996) Single-cell protein of Rhodotorula sp. Y38 from ethanol, acetic acid and acetaldehyde. Biotechnol Lett 18:411–416

    Article  CAS  Google Scholar 

  • Zhang T, Gong F, Chi Z, Liu GL, Chi ZM, Sheng J, Li J, Wang XH (2009) Cloning and characterization of the inulinase gene from a marine yeast Pichia guilliermondii and its expression in Pichia pastoris. Anton Leeuw Int JG 95:13–22

    Article  CAS  Google Scholar 

  • Zhang Y, Adams P, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153:2013–2025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Science Foundation of China (NSFC; No.3087221) and Nanyang Qiwei Microecology Gene Science and Technology Development Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanxiao Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Sun, H., Mo, X. et al. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis . Appl Microbiol Biotechnol 97, 4927–4936 (2013). https://doi.org/10.1007/s00253-012-4571-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4571-5

Keywords

Navigation