Skip to main content
Log in

One-step synthesis of 12-ketoursodeoxycholic acid from dehydrocholic acid using a multienzymatic system

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

12-ketoursodeoxycholic acid (12-keto-UDCA) is a key intermediate for the synthesis of ursodeoxycholic acid (UDCA), an important therapeutic agent for non-surgical treatment of human cholesterol gallstones and various liver diseases. The goal of this study is to develop a new enzymatic route for the synthesis 12-keto-UDCA based on a combination of NADPH-dependent 7β-hydroxysteroid dehydrogenase (7β-HSDH, EC 1.1.1.201) and NADH-dependent 3α-hydroxysteroid dehydrogenase (3α-HSDH, EC 1.1.1.50). In the presence of NADPH and NADH, the combination of these enzymes has the capacity to reduce the 3-carbonyl- and 7-carbonyl-groups of dehydrocholic acid (DHCA), forming 12-keto-UDCA in a single step. For cofactor regeneration, an engineered formate dehydrogenase, which is able to regenerate NADPH and NADH simultaneously, was used. All three enzymes were overexpressed in an engineered expression host Escherichia coli BL21(DE3)Δ7α-HSDH devoid of 7α-hydroxysteroid dehydrogenase, an enzyme indigenous to E. coli, in order to avoid formation of the undesired by-product 12-chenodeoxycholic acid in the reaction mixture. The stability of enzymes and reaction conditions such as pH value and substrate concentration were evaluated. No significant loss of activity was observed after 5 days under reaction condition. Under the optimal condition (10 mM of DHCA and pH 6), 99 % formation of 12-keto-UDCA with 91 % yield was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bovara R, Carrea G, Riva S, Secundo F (1996) A new enzymatic route to the synthesis of 12-ketoursodeoxycholic acid. Biotechnol Lett 18(3):305–308

    Article  CAS  Google Scholar 

  • Braun M, Lünsdorf H, Bückmann AF (1991) 12α-hydroxysteroid dehydrogenase from Clostridium group P, strain C 48-50. Production, purification and characterization. Eur J Biochem 196(2):439–450

    Article  CAS  Google Scholar 

  • Braun M, Link H, Liu L, Schmid RD, Weuster-Botz D (2011) Biocatalytic process optimization based on mechanistic modeling of cholic acid oxidation with cofactor regeneration. Biotechnol Bioeng 108(6):1307–1317

    Article  CAS  Google Scholar 

  • Carrea G, Bovara R, Longhi R, Barani R (1984) Enzymatic reduction of dehydrocholic acid to 12-ketochenodeoxycholic acid with NADH regeneration. Enzym Microb Tech 6(7):307–311

    Article  CAS  Google Scholar 

  • Colombo C, Setchell KD, Podda M, Crosignani A, Roda A, Curcio L, Ronchi M, Giunta A (1990) Effects of ursodeoxycholic acid therapy for liver disease associated with cystic fibrosis. J Pediatr 117(3):482–489

    Article  CAS  Google Scholar 

  • Combes B, Carithers RLJ, Maddrey WC, Lin D, McDonald MF, Wheeler DE, Eigenbrodt EH, Muñoz SJ, Rubin R, Garcia-Tsao G, Santiago J, Bonner GF, West AB, Boyer JL, Luketic VA, Shiffman ML, Mills AS, Peters MG, White HM, Zetterman RK, Rossi SS, Hofmann AF, Markin RS (1995) A randomized, double-blind, placebo-controlled trial of ursodeoxycholic acid in primary biliary cirrhosis. Hepatol 22(3):759–766

    CAS  Google Scholar 

  • Cravotto G, Binello A, Boffa L, Rosati O, Boccalini M, Chimichi S (2006) Regio- and stereoselective reductions of dehydrocholic acid. Steroids 71(6):469–475

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97(12):6640–6645

    Article  CAS  Google Scholar 

  • Fossati E, Polentini F, Carrea G, Riva S (2006) Exploitation of the alcohol dehydrogenase-acetone NADP-regeneration system for the enzymatic preparative-scale production of 12-ketochenodeoxycholic acid. Biotechnol Bioeng 93(6):1216–1220

    Article  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci 100(4):1541–1546

    Article  CAS  Google Scholar 

  • Hinkley DF, Plainfield, Singleton B, Elizabeth and NJ (1960) Oxidation of cholic acid with chlorine, In US Patent No. 2,966,499 USA

  • Hölsch K, Weuster-Botz D (2010) Enantioselective reduction of prochiral ketones by engineered bifunctional fusion proteins. Biotechnol Appl Biochem 56(4):131–140

    Article  Google Scholar 

  • Huang M (1949) Reduction of steroid ketones and other carbonyl compounds by modified Wolff–Kishner method. J Am Chem Soc 71(10):3301–3303

    Article  Google Scholar 

  • Im E, Martinez JD (2004) Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells. J Nutr 134(2):483–486

    CAS  Google Scholar 

  • Jörnvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochem 34(18):6003–6013

    Article  Google Scholar 

  • Kanazawa T, Shimazaki A, Sato T, Hoshino T (1955) Study on the ursodeoxycholic acid synthesis. Nippon Kagaku Zasshi 76:297–301

    Article  CAS  Google Scholar 

  • Khare S, Cerda S, Wali RK, von Lintig FC, Tretiakova M, Joseph L, Stoiber D, Cohen G, Nimmagadda K, Hart J, Sitrin MD, Boss GR, Bissonnette M (2003) Ursodeoxycholic acid inhibits Ras mutations, wild-type Ras activation, and cyclooxygenase-2 expression in colon cancer. Cancer Res 63(13):3517–3523

    CAS  Google Scholar 

  • Liu L, Aigner A, Schmid RD (2011) Identification, cloning, heterologous expression, and characterization of a NADPH-dependent 7beta-hydroxysteroid dehydrogenase from Collinsella aerofaciens. Appl Microbiol Biotechnol 90(1):127–135

    Article  CAS  Google Scholar 

  • MacDonald IA, Williams CN, Mahony DE (1973) 7α-hydroxysteroid dehydrogenase from Escherichia coli B: preliminary studies. Biochim Biophys Acta 309(2):243–253

    Article  CAS  Google Scholar 

  • Makino I, Shinozaki K, Yoshino K, Nakagawa S (1975) Dissolution of cholesterol gallstones by long-term administration of ursodeoxycholic acid. Nippon Shokakibyo Gakkai Zasshi 72(6):690–702

    CAS  Google Scholar 

  • Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60(3):512–538

    CAS  Google Scholar 

  • Mobus E, Maser E (1998) Molecular cloning, overexpression, and characterization of steroid-inducible 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. A novel member of the short-chain dehydrogenase/reductase superfamily. J Biol Chem 273(47):30888–30896

    Article  CAS  Google Scholar 

  • Monti D, Ferrandi E, Zanellato I, Hua L, Polentini F, Carrea G, Riva S (2009) One-pot multienzymatic synthesis of 12-ketoursodeoxycholic acid: subtle cofactor specificities rule the reaction equilibria of five biocatalysts working in a row. Adv Synth Catal 351(9):1303–1311

    Article  CAS  Google Scholar 

  • Salen G, Colalillo A, Verga D, Bagan E, Tint GS, Shefer S (1980) Effect of high and low doses of ursodeoxycholic acid on gallstone dissolution in humans. Gastroenterol 78(6):1412–1418

    CAS  Google Scholar 

  • Sawada H, Kulprecha S, Nilubol N, Yoshida T, Kinoshita S, Taguchi H (1982) Microbial production of ursodeoxycholic acid from lithocholic acid by Fusarium equiseti M41. Appl Environ Microbiol 44(6):1249–1252

    CAS  Google Scholar 

  • Shoda M (1927) Über die Ursodeoxycholsäure aus Bärengallen und ihre physiologische Wirkung. J Biochem 7:505–517

    CAS  Google Scholar 

  • Stiehl A, Czygan P, Kommerell B, Weis HJ, Holtermuller KH (1978) Ursodeoxycholic acid versus chenodeoxycholic acid. Comparison of their effects on bile acid and bile lipid composition in patients with cholesterol gallstones. Gastroenterol 75(6):1016–1020

    CAS  Google Scholar 

  • Sutherland JD, MacDonald IA, Forrest TP (1982) The enzymic and chemical synthesis of ursodeoxycholic and chenodeoxycholic acid from cholic acid. Prep Biochem 12(4):307–321

    Article  CAS  Google Scholar 

  • Tishkov VI, Popov VO (2006) Protein engineering of formate dehydrogenase. Biomol Eng 23(2–3):89–110

    Article  CAS  Google Scholar 

  • Yoshimoto T, Higashi H, Kanatani A, Lin XS, Nagai H, Oyama H, Kurazono K, Tsuru D (1991) Cloning and sequencing of the 7α-hydroxysteroid dehydrogenase gene from Escherichia coli HB101 and characterization of the expressed enzyme. J Bacteriol 173(7):2173–2179

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the BMBF (German Federal Ministry of Education and Research), Grant-No. FKZ 0315269, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf D. Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Braun, M., Gebhardt, G. et al. One-step synthesis of 12-ketoursodeoxycholic acid from dehydrocholic acid using a multienzymatic system. Appl Microbiol Biotechnol 97, 633–639 (2013). https://doi.org/10.1007/s00253-012-4340-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4340-5

Keywords

Navigation