Skip to main content
Log in

Features and applications of bilirubin oxidases

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Discovered in 1981 by Tanaka and Murao (Agric Biol Chem 45:2383-2384, 1981), bilirubin oxidase (BOD) is a sub-group of multicopper oxidases (MCOs) also utilizing four Cu+/2+ ions. It catalyzes the oxidation of bilirubin to biliverdin, hence the classification of bilirubin oxidase, and has been primarily used in the determination of bilirubin in serum and thereby in the diagnostic of jaundice. Unlike laccases, the most studied MCOs, BODs display a high activity and stability at neutral pH, a high tolerance towards chloride anions and other chelators, and for some species, a high thermal tolerance. Therefore, BODs could potentially be an alternative to laccase which are so far mainly restricted to applications in acid media. Because of growing interest in BODs for numerous applications under mild pH conditions, based on the number of patents and publications published in the last 5 years, here I will summarize the available data on the biochemical properties of BODs, their occurrence, and their possible biotechnological use in (1) the field of Healthcare for the elaboration of biofuel cells or bilirubin sensors or (2) the field of environmentally desirable applications such as depollution, decolorization of dyes, and pulp bleaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackermann Y, Guschin DA, Eckhard K, Shleev S, Schuhmann W (2010) Design of a bioelectrocatalytic electrode interface for oxygen reduction in biofuel cells based on a specifically adapted Os-complex containing redox polymer with entrapped Trametes hirsuta laccase. Electrochem Commun 12(5):640–643

    Article  CAS  Google Scholar 

  • Artiss JD, McEnroe RJ, Zak B (1984) Bilirubin interference in a peroxidase-coupled procedure for creatinine eliminated by bilirubin oxidase. Clin Chem 30(8):1389–1392

    CAS  Google Scholar 

  • Barriere F, Kavanagh P, Leech D (2006) A laccase-glucose oxidase biofuel cell prototype operating in a physiological conditions. Electrochim Acta 51:5187–5192

    Article  CAS  Google Scholar 

  • Barton SC, Pickard M, Vasquez-Duhalf R, Heller A (2002) Electroreduction of O2 to water at 0.6V (SHE) at pH 7 on the 'wired' Pleurotus ostreatus laccase cathode. Biosens. Bioelec. 17(11-12): 1071-1074

  • Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886

    Article  CAS  Google Scholar 

  • Boland S, Leech D (2012) A glucose/oxygen enzymatic fuel cell based on redox polymer and enzyme immobilisation at highly-ordered macroporous gold electrodes. Analyst 137(1):113–117

    Article  CAS  Google Scholar 

  • Brissos V, Pereira L, Munteanu FD, Cavaco-Paulo A, Martins LO (2009) Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes. Biotechnol J 4(4):558–563

    Article  CAS  Google Scholar 

  • Cracknell JA, McNamara TP, Lowe ED, Blanford CF (2011) Bilirubin oxidase from Myrothecium verrucaria: X-ray determination of the complete crystal structure and a rational surface modification for enhanced electrocatalytic O2 reduction. Dalton Trans 40(25):6668–6675

    Article  CAS  Google Scholar 

  • Dos Santos L, Climent V, Blanford CF, Armstrong FA (2010) Mechanistic studies of the 'blue' Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Phys Chem Chem Phys 12(42):13962–13974

    Article  Google Scholar 

  • Doumas BT, Perry B, Jendrzejczak B, Davis L (1987) Measurement of direct bilirubin by use of bilirubin oxidase. Clin Chem 33(8):1349–1353

    CAS  Google Scholar 

  • Doumas BT, Yein F, Perry B, Jendrzejczak B, Kessner A (1999) Determination of the sum of bilirubin sugar conjugates in plasma by bilirubin oxidase. Clin Chem 45(8):1255–1260

    CAS  Google Scholar 

  • Durand F, Gounel S, Kjaergaard C, Solomon E, Mano N (2012a) Bilirubin oxidase from Magnaporthe oryzae: an attractive enzyme for biotechnological application. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-3926-2

  • Durand F, Kjaergaard CH, Suraniti E, Gounel S, Hadt RG, Solomon EI, Mano N (2012b) Bilirubin oxidase from Bacillus pumilus: a promising enzyme for the elaboration of efficient cathodes in biofuel cells. Biosens Bioelectron 35(1):140–146

    Article  CAS  Google Scholar 

  • Durao P, Chen Z, Fernandes AT, Hildebrandt P, Murgida DH, Todorovic S, Pereira MM, Melo EP, Martins LO (2008) Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. J Biol Inorg Chem 13(2):183–193

    Article  CAS  Google Scholar 

  • Edembe L, Gounel S, Cadet M, Durand F, Mano N (2012) A highly efficient O2 cathode based on bilirubin oxidase from Bacillus pumilus operating in serum. Electrochem Commun: 10.1016/j.elecom.2012.1007.1013

  • Falk M, Andoralov V, Blum Z, Sotres J, Suyatin DB, Ruzgas T, Arnebrant T, Shleev S (2012) Biofuel cell as a power source for electronic contact lenses. Biosens Bioelectron 37:38–45

    Article  CAS  Google Scholar 

  • Fortuney A, Guibault GG (1996) Enzyme electrode for the determination of bilirubin. Electroanalysis 8(3):229–232

    Article  CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Bioresour Technol 79:251–262

    Article  CAS  Google Scholar 

  • Gallaway J, Wheeldon I, Rincon R, Atanassov P, Banta S, Barton SC (2008) Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Biosens Bioelectron 23:1229-1235

    Google Scholar 

  • Gao F, Viry L, Maugey M, Poulin P, Mano N (2010) Engineering hybrid nanotube wires for high-power biofuel cells. Nat Commun 1(1): 10.1038/ncomms1000

  • Goldfinch ME, Maguire GA (1988) Investigation of the use of bilirubin oxidase to measure the apparent unbound bilirubin concentration in human plasma. Ann Clin Biochem 25(Pt 1):73–77

    CAS  Google Scholar 

  • Guo J, Liang XX, Mo PS, Li GX (1991) Purification and properties of bilirubin oxidase from Myrothecium verrucaria. Appl Biochem Biotechnol 31(2):135–143

    Article  CAS  Google Scholar 

  • Gupta S, Lau C, Rajendran A, Colon F, Branch B, Ivnitski D, Atanassov P (2011) Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes. Electrochem Comm 13:247–249

    Article  CAS  Google Scholar 

  • Halamkova L, Halamek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) Implanted biofuel cell in a living snail. J Am Chem Soc 134:5040–5043

    Article  CAS  Google Scholar 

  • Hilden K, Hakala TK, Lundell T (2009) Thermotolerant and thermostable laccases. Biotechnol Lett 31(8):1117–1128

    Article  CAS  Google Scholar 

  • Hiromi K, Yamaguchi S, Sugiura Y, Iwamoto H, Hirose J (1992) Bilirubin oxidase from Trachyderma tsunodae K-2593, a multi-copper enzyme. Biosci Biotech Biochem 56:1349–1350

    Article  CAS  Google Scholar 

  • Kamitaka Y, Tsujimura S, Kataoka K, Sakurai T, Ikeda T, Kano K (2007a) Effects of axial ligand mutation of the type I copper site in bilirubin oxidase on direct electron transfer type bioelectrocatalytic reduction of oxygen. J Electroanal Chem 601:119–124

    Article  CAS  Google Scholar 

  • Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K (2007b) Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys Chem Chem Phys 9(15):1793–1801

    Article  CAS  Google Scholar 

  • Karaskiewicz M, Nazruk E, Zelechowska K, Biernat JF, Rogalski J, Bilewicz R (2012) Fully enzymatic mediatorless fuel cell with efficient naphtylated cabon nanotube-laccases composites cathodes. Electrochem Commun 20:124–127

    Article  CAS  Google Scholar 

  • Kataoka K, Kitagawa R, Inoue M, Naruse D, Sakurai T, Huang HW (2005a) Point mutations at the type I Cu ligands, Cys457 and Met467, and at the putative proton donor, Asp105, in Myrothecium verrucaria bilirubin oxidase and reactions with dioxygen. Biochemistry 44(18):7004–7012

    Article  CAS  Google Scholar 

  • Kataoka K, Tanaka K, Sakai Y, Sakurai T (2005b) High-level expression of Myrothecium verrucaria bilirubin oxidase in Pichia pastoris, and its facile purification and characterization. Protein Expr Purif 41(1):77–83

    Article  CAS  Google Scholar 

  • Kirihigashi K, Tatsumi N, Hino M, Yamane T, Ohta K (2000) Basic and clinical evaluation of a newly-developed enzymatic bilirubin assay. Osaka City Med J 46(1):55–70

    CAS  Google Scholar 

  • Kirk JM (2008) Neonatal jaundice: a critical review of the role and practice of bilirubin analysis. Ann Clin Biochem 45:452–462

    Article  CAS  Google Scholar 

  • Kjaergaard CH, Durand F, Tasca F, Qayyum MF, Kauffmann B, Gounel S, Suraniti E, Hodgson KO, Hedman B, Mano N, Solomon EI (2012) Spectroscopic and crystallographic characterization of "alternative resting" and "resting oxidized" enzyme forms of bilirubin oxidase: implications for activity and electrochemical behavior of multicopper oxidases. J Am Chem Soc 134(12):5548–5551

    Article  CAS  Google Scholar 

  • Klemm J, Prodromidis MI, Karayannis MI (2000) An enzymatic method for the determination of bilirubin using an oxygen electrode. Electroanalysis 12(4):292–295

    Article  CAS  Google Scholar 

  • Koikeda S, Ando K, Kaji H, Inoue T, Murao S, Takeuchi K, Samejima T (1993) Molecular cloning of the gene for bilirubin oxidase from Myrothecium verrucaria and its expression in yeast. J Biol Chem 268(25):18801–18809

    CAS  Google Scholar 

  • Kosaka A, Yamamoto A, Morishita Y, Nakane K (1987) Enzymatic determination of bilirubin fractions in serum. Clin Biochem 20:451–458

    Article  CAS  Google Scholar 

  • Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB (2008) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol 79(2):217–224

    Article  CAS  Google Scholar 

  • Kurosakaa K, Senbaa S, Tsubotab T, Kondoa H (1998) A new enzymatic assay for selectively measuring conjugated bilirubin concentration in serum with use of bilirubin oxidase. Clinica Chimica Acta 269:125–136

    Article  Google Scholar 

  • Leech D, Kavanagh P, Schuhmann W (2012) Enzymatic fuel cells: recent progress. Electrochim. Acta. http://dx.doi.org/10.1016/j.electacta.2012.02.087

  • Liu Y, Huang J, Zhang X (2009) Decolorization and biodegradation of remazol brilliant blue R by bilirubin oxidase. J Biosci Bioeng 108(6):496–500

    Article  CAS  Google Scholar 

  • Mano N, Kim HH, Zhang Y, Heller A (2002) An oxygen cathode operating in a physiological solution. J Am Chem Soc 124:6480–6486

    Article  CAS  Google Scholar 

  • Mano N, Fernandez JL, Kim Y, Shin W, Bard AJ, Heller A (2003) Oxygen is electroreduced to water on a "wired" enzyme electrode at a lesser overpotential than on platinum. J Am Chem Soc 125:15290–15291

    Article  CAS  Google Scholar 

  • Mano N, Soukharev VS, Heller A (2006) A laccase-wiring redox hydrogel for efficient catalysis of O2 electroreduction. J Phys Chem B 110:11180–11187

    Article  CAS  Google Scholar 

  • Masuda-Nishimura I, Ichikawa K, Hatamoto O, Abe K, Koyama Y (1999) cDNA cloning of bilirubin oxidase from Pleurotus ostreatus strain Shinshu and its expression in Aspergillus sojae: an efficient screening of transformants, using the laccase activity of bilirubin oxidase. J Gen Appl Microbiol 45:93–97

    Article  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60(6):551–565

    Article  CAS  Google Scholar 

  • Million CJ, Klibanov AM, Langer R (1988) Kinetics of bilirubin oxidase and modeling of an immobilized bilirubin oxidase reactor for bilirubin detoxification. Biotechnol Bioeng 31(6):536–546

    Article  CAS  Google Scholar 

  • Mizutani K, Toyoda M, Sagara K, Takahashi N, Sato A, Kamitaka Y, Tsujimura S, Nakanishi Y, Sugiura T, Yamaguchi S, Kano K, Mikami B (2010) X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 A resolution using a twinned crystal. Acta Crystallogr Sect F Struct Biol Cryst Commun 66(Pt 7):765–770

    Article  Google Scholar 

  • Mohammadian M, Fathi-Roudsari M, Mollania N, Badoei-Dalfard A, Kjhajed K (2010) Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol 37:863–869

    Article  CAS  Google Scholar 

  • Mullon CJ, Langer R (1987) Determination of conjugated and total bilirubin in serum of neonates, with use of bilirubin oxidase. Clin Chem 33(10):1822–1825

    CAS  Google Scholar 

  • Mullon CJ, Tosone CM, Langer R (1989) Simulation of bilirubin detoxification in the newborn using an extracorporeal bilirubin oxidase reactor. Pediatr Res 26(5):452–457

    Article  CAS  Google Scholar 

  • Murao S, Tanaka N (1981) A new enzyme "bilirubin oxidase" produced by Myrothecium verrucaria MT-1. Agric Biol Chem 45:2383–2384

    Article  CAS  Google Scholar 

  • Murao S, Tanaka N (1982) Isolation and identification of a microorganism producing bilirubin oxidase. Agric Biol Chem 46(8):2031–2034

    Article  CAS  Google Scholar 

  • Nakamura H, Lee Y (1977) Microdetermination of unbound bilirubin in icteric newborn sera: an enzymatic method employing peroxidase and glucose oxidase. Clin Chim Acta 79(2):411–417

    Article  CAS  Google Scholar 

  • Pereira L, Coelho AV, Viegas CA, Santos MM, Robalo MP, Martins LO (2009) Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol 139(1):68–77

    Article  CAS  Google Scholar 

  • Perry B, Doumas BT, Buffone G, Glick M, Ou CN, Ryder K (1986) Measurement of total bilirubin by use of bilirubin oxidase. Clin Chem 32(2):329–332

    CAS  Google Scholar 

  • Ramirez P, Mano N, Andreu R, Ruzgas T, Heller A, Gorton L, Shleev S (2008) Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of bilirubin oxidase. Biochim Biophys Acta 1777:1364–1369

    Article  CAS  Google Scholar 

  • Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D (2012) An implantable biofuel cell for a live insect. J Am Chem Soc 134(3):1458–1460

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Rowinski P, Bilewicz R, Stebe MJ, Rogalska EE (2004) Electrodes modified with monoolein cubic phases hosting laccases for the catalytic reduction of dioxygen. Anal Chem 76(2):283–291

    Article  CAS  Google Scholar 

  • Sakasegawa S, Ishikawa H, Imamura S, Sakuraba H, Goda S, Ohshima T (2006) Bilirubin oxidase activity of Bacillus subtilis CotA. Appl Environ Microbiol 72(1):972–975

    Article  CAS  Google Scholar 

  • Sakurai T, Kataoka K (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec 7(4):220–229

    Article  CAS  Google Scholar 

  • Sakurai T, Zhan L, Fujita T, Kataoka K, Shimizu A, Samejima T, Yamakguchi S (2003) Autenthic and recombinant bilirubin oxidases are in different resting forms. Biosci Biotechnol Biochem 67(5):1157–1159

    Article  CAS  Google Scholar 

  • Salaj-Kosla U, Poller S, Beyl Y, Scanlon MD, Belochapkin S, Shleev S, Schuhmann W, Magner E (2012) Direct electron transfer of bilirubin oxidase (Myrothecium verrucaria) at an unmodified nanopoorus gold biocathode. Electrochem Comm 16:92–95

    Article  CAS  Google Scholar 

  • Satomura S, Miki Y, Hamanaka T, Sakata Y (1985) Kinetic assay of gamma-glutamyltransferase with use of bilirubin oxidase as a coupled enzyme. Clin Chem 31(8):1380–1383

    CAS  Google Scholar 

  • Seki Y, Takeguchi M, Okura I (1996) Purification and properties of bilirubin oxidase from Penicillium janthinellum. J Biotechnol 46:145–151

    Article  CAS  Google Scholar 

  • Shimizu A, Kwon JH, Sasaki T, Satoh T, Sakurai N, Sakurai T, Yamaguchi S, Samejima T (1999a) Myrothecium verrucaria bilirubin oxidase and its mutants for potential copper ligands. Biochemistry 38(10):3034–3042

    Article  CAS  Google Scholar 

  • Shimizu A, Sasaki T, Kwon JH, Odaka A, Satoh T, Sakurai N, Sakurai T, Yamaguchi S, Samejima T (1999b) Site-directed mutagenesis of a possible type 1 copper ligand of bilirubin oxidase; a Met467Gln mutant shows stellacyanin-like properties. J Biochem 125(4):662–668

    Article  CAS  Google Scholar 

  • Shimizu A, Samejima T, Hirota S, Yamaguchi S, Sakurai N, Sakurai T (2003) Type III Cu mutants of Myrothecium verrucaria bilirubin oxidase. J Biochem 133(6):767–772

    Article  CAS  Google Scholar 

  • Shleev S, Nikitina O, Christenson A, Reimann CT, Yaropolov AI, Ruzgas T, Gorton L (2007) Characterization of two new multiforms of Trametes pubescens laccase. Bioorg Chem 35(1):35–49

    Article  CAS  Google Scholar 

  • Shleev S, Andoralov V, Falk M, Reimann CT, Ruzgas T, Srnec M, Ryde U, Rulisek L (2012) On the possibility of uphill intramolecular electron transfer in multicopper oxidases: electrochemical and quantum chemical study of bilirubin oxidase. Electroanalysis 24:1524–1540

    Article  CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605

    Article  CAS  Google Scholar 

  • Solomon EI, Chen P, Metz M, Lee SK, Palmer AE (2001) Oxygen binding, activation, and reduction to water by copper proteins. Angew Chem Int Ed Engl 40(24):4570–4590

    Article  CAS  Google Scholar 

  • Soltys PJ, Mullon C, Langer R (1992) Oral treatment for jaundice using immobilized bilirubin oxidase. Artif Organs 16(4):331–335

    Article  CAS  Google Scholar 

  • Suraniti E, Abintou M, Durand F, Mano N (2012) Heat and drying time modulate the O2 reduction current of modified glassy carbon electrodes with bilirubin oxidases. Bioelectrochemistry 88:65–69

    Article  Google Scholar 

  • Takeguchi M, Seki Y, Murao S, Shin T, Okura I (1995) On the molecular weight of bilirubin oxidase from Penicillum janthinellum. J Mol Cat A: Chemical 97:L3–L5

    Article  Google Scholar 

  • Tanaka N, Murao S (1981) A new enzyme bilirubin oxidase produced by Myrothecium verrucaria MT-1. Agric Biol Chem 45:2383–2384

    Article  Google Scholar 

  • Tanaka N, Murao S (1985) Reaction of bilirubin oxidase produced by Myrothecium verrucaria MT-1. Agric Biol Chem 49:843–844

    Article  CAS  Google Scholar 

  • Tarasevich M, Yaropolov A, Bogdanovskaya VA, Varfolomeev S (1979) Electrocatalysis of a cathodic oxygen reduction by laccase J. Electroanal Chem 104:393–403

    Article  Google Scholar 

  • Tasca F, Gorton L, Kujawa M, Patel I, Harreither W, Peterbauer CK, Ludwig R, Noll G (2010) Increasing the coulombic efficiency of glucose biofuel cell anodes by combination of redox enzymes. Biosens Bioelectron 25(7):1710–1716

    Article  CAS  Google Scholar 

  • Tsujimura S, Tatsumi H, Ogawa J, Shimizu S, Kano K, Ikeda T (2001) Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2,2'-azinobis(3-ethylbenzothiazolin-6-silfonate) as an electron transfer mediator. J Electroanal Chem 496:69–75

    Article  CAS  Google Scholar 

  • Tsujimura S, Nakagawa T, Kano K, Ikeda T (2004) Kinetic study of direct bioelectrocatalysis of dioxygen reduction with bilirubin oxidase at carbon electrodes. Electrochemistry 72(6):437–439

    CAS  Google Scholar 

  • Wang X, Falk M, Ortiz R, Matsumura H, Bobacka J, Ludwig R, Bergelin M, Gorton L, Shleev S (2012) Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes. Biosens Bioelectron 31(1):219–225

    Article  Google Scholar 

  • Weisburger JH (2002) Comments on the history and importance of aromatic and heterocyclic amines in public health. Mutat Res 506:9–20

    Article  Google Scholar 

  • Xu F (2001) Dioxygen reactivity of laccase: dependence on laccase source, pH, and anion inhibition. Appl Biochem Biotechnol 95:125–133

    Article  CAS  Google Scholar 

  • Yoshino EM, JP) , Imamura SS, JP) , Matsuura KS, JP) , Misaki HS, JP) 1988. Thermostable bilirubin oxidase and production process thereof. Toyo Jozo Co., Ltd. (Shizuoka, JP) Japan

  • Zebda A, Gondran C, Le Goff A, Holzinger M, Cosnier S (2011) Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat. Commun.: DOI: 10.1038/ncomms1365

  • Zloczewska A, Jonsson-Niedziolka M, Rogalski J, Opallo M (2011) Vertically aligned carbon nanotube film electrodes for bioelectrocatalytic dioxygen reduction. Electrochim Acta 56:3947–3953

    Article  CAS  Google Scholar 

  • Zoppellaro G, Sakurai N, Kataoka K, Sakurai T (2004) The reversible change in the redox state of type I Cu in Myrothecium verrucaria bilirubin oxidase depending on pH. Biosci Biotechnol Biochem 68(9):1998–2000

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I was privileged to work on this subject with Jean Frédéric Sanchez, Olivier Courjean, Fabien Durand, Sébastien Gounel, Emmanuel Suraniti, Lise Edembe, Marine Cadet, Brice Kauffmann, Prof. Solomon, and Christian Hauge Kjaergaard. I thank Christian for reviewing the manuscript.

Funding has been provided by la Région Aquitaine, a PI Energie (PR10-1-3) and a European Young Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Mano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mano, N. Features and applications of bilirubin oxidases. Appl Microbiol Biotechnol 96, 301–307 (2012). https://doi.org/10.1007/s00253-012-4312-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4312-9

Keywords

Navigation