Skip to main content
Log in

Genome-based cryptic gene discovery and functional identification of NRPS siderophore peptide in Streptomyces peucetius

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Identification of secondary metabolites produced by cryptic gene in bacteria may be difficult, but in the case of nonribosomal peptide (NRP)-type secondary metabolites, this study can be facilitated by bioinformatic analysis of the biosynthetic gene cluster and tandem mass spectrometry analysis. To illustrate this concept, we used mass spectrometry-guided bioinformatic analysis of genomic sequences to identify an NRP-type secondary metabolite from Streptomyces peucetius ATCC 27952. Five putative NRPS biosynthetic gene clusters were identified in the S. peucetius genome by DNA sequence analysis. Of these, the sp970 gene cluster encoded a complete NRPS domain structure, viz., C-A-T-C-A-T-E-C-A-T-C-A-T-C domains. Tandem mass spectrometry revealed that the functional siderophore peptide produced by this cluster had a molecular weight of 644.4 Da. Further analysis demonstrated that the siderophore peptide has a cyclic structure and an amino acid composition of AchfOrn–Arg–hOrn–hfOrn. The discovery of functional cryptic genes by analysis of the secretome, especially of NRP-type secondary metabolites, using mass spectrometry together with genome mining may contribute significantly to the development of pharmaceuticals such as hybrid antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ansari MZ, Yadav G, Gokhale RS, Mohanty D (2004) NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res 32(Web Server issue):W405–W413

    Article  CAS  Google Scholar 

  • Challis GL, Ravel J (2000) Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett 187(2):111–114

    Article  CAS  Google Scholar 

  • Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7(3):211–224

    Article  CAS  Google Scholar 

  • Essen SA, Bylund D, Holmstrom SJ, Moberg M, Lundstrom US (2006) Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals 19(3):269–282

    Article  CAS  Google Scholar 

  • Felnagle EA, Barkei JJ, Park H, Podevels AM, McMahon MD, Drott DW, Thomas MG (2010) MbtH-like proteins as integral components of bacterial nonribosomal peptide synthetases. Biochemistry 49(41):8815–8817

    Article  CAS  Google Scholar 

  • Fuchs R, Budzikiewicz H (2001) Rearrangement reactions in the electrospray ionization mass spectra of pyoverdins. Int J Mass Spectrom 210(1–3):603–612

    Google Scholar 

  • Gillam AH, Lewis AG, Andersen RJ (1981) Quantitative-determination of hydroxamic acids. Anal Chem 53(6):841–844

    Article  CAS  Google Scholar 

  • Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14(1):53–63

    Article  CAS  Google Scholar 

  • Hayen H, Volmer DA (2005) Rapid identification of siderophores by combined thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 19(5):711–720

    Article  CAS  Google Scholar 

  • Lautru S, Challis GL (2004) Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiology 150(Pt 6):1629–1636

    Article  CAS  Google Scholar 

  • Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1(5):265–269

    Article  CAS  Google Scholar 

  • Malla S, Niraula NP, Liou K, Sohng JK (2009) Enhancement of doxorubicin production by expression of structural sugar biosynthesis and glycosyltransferase genes in Streptomyces peucetius. J Biosci Bioeng 108(2):92–98

    Google Scholar 

  • McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci USA 103(46):17243–17248

    Article  CAS  Google Scholar 

  • Muller G, Raymond KN (1984) Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus. J Bacteriol 160(1):304–312

    CAS  Google Scholar 

  • Qi W, Jia CX, He ZM, Qiao B (2007) Multistep tandem mass spectrometry for sequencing cyclic peptides axinastatin 1 and deducing fragmentation pathways. Acta Chimica Sin 65(3):233–238

    CAS  Google Scholar 

  • Robbel L, Knappe TA, Linne U, Xie X, Marahiel MA (2010) Erythrochelin—a hydroxamate-type siderophore predicted from the genome of Saccharopolyspora erythraea. FEBS J 277(3):663–676

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  Google Scholar 

  • Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995a) Determination of the structure of exochelin MN, the extracellular siderophore from Mycobacterium neoaurum. Chem Biol 2(8):553–561

    Article  CAS  Google Scholar 

  • Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995b) Isolation, purification and structure of exochelin MS, the extracellular siderophore from Mycobacterium smegmatis. Biochem J 305(Pt 1):187–196

    CAS  Google Scholar 

  • Silakowski B, Kunze B, Muller R (2001) Multiple hybrid polyketide synthase/non-ribosomal peptide synthetase gene clusters in the myxobacterium Stigmatella aurantiaca. Gene 275(2):233–240

    Article  CAS  Google Scholar 

  • Simionato AV, de Souza GD, Rodrigues-Filho E, Glick J, Vouros P, Carrilho E (2006) Tandem mass spectrometry of coprogen and deferoxamine hydroxamic siderophores. Rapid Commun Mass Spectrom 20(2):193–199

    Article  CAS  Google Scholar 

  • Stegmann E, Rausch C, Stockert S, Burkert D, Wohlleben W (2006) The small MbtH-like protein encoded by an internal gene of the balhimycin biosynthetic gene cluster is not required for glycopeptide production. FEMS Microbiol Lett 262(1):85–92

    Article  CAS  Google Scholar 

  • Sudek S, Haygood MG, Youssef DT, Schmidt EW (2006) Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl Environ Microbiol 72(6):4382–4387

    Article  CAS  Google Scholar 

  • Wenzel SC, Muller R (2005) Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic. Curr Opin Chem Biol 9(5):447–458

    Article  CAS  Google Scholar 

  • Wenzel SC, Kunze B, Hofle G, Silakowski B, Scharfe M, Blocker H, Muller R (2005) Structure and biosynthesis of myxochromides S1-3 in Stigmatella aurantiaca: evidence for an iterative bacterial type I polyketide synthase and for module skipping in nonribosomal peptide biosynthesis. Chembiochem 6(2):375–385

    Article  CAS  Google Scholar 

  • Wong GB, Kappel MJ, Raymond KN, Matzanke B, Winkelmann G (1983) Coordination chemistry of microbial iron transport compounds. 24. Characterization of coprogen and ferricrocin, 2 ferric hydroxamate siderophores. J Am Chem Soc 105(4):810–815

    Article  CAS  Google Scholar 

  • Wong DK, Gobin J, Horwitz MA, Gibson BW (1996) Characterization of exochelins of Mycobacterium avium: evidence for saturated and unsaturated and for acid and ester forms. J Bacteriol 178(21):6394–6398

    CAS  Google Scholar 

  • Zhang W, Heemstra JR Jr, Walsh CT, Imker HJ (2010) Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins. Biochemistry 49(46):9946–9947

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intelligent Synthetic Biology Center of Global Frontier Project funded by the Ministry of Education, Science and Technology (2011-0031960) and Basic Science Research Program (2009-0071169) and Priority Research Centers Program (20110031388) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyoung Il Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HM., Kim, BG., Chang, D. et al. Genome-based cryptic gene discovery and functional identification of NRPS siderophore peptide in Streptomyces peucetius . Appl Microbiol Biotechnol 97, 1213–1222 (2013). https://doi.org/10.1007/s00253-012-4268-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4268-9

Keywords

Navigation