Skip to main content

Advertisement

Log in

Cytoplasmic expression, antibody production, and characterization of the novel zinc finger protein 637

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Zinc finger protein 637 (zfp637), belonging to the Kruppel-like protein family, comprises one atypical C2H2 and six consecutive typical zinc finger motifs. Based on the structural characterization of zfp637 and its location in the cell nucleus, we predict that zfp637 might function as a DNA-binding protein to regulate gene transcription. However, the absence of both a purified zfp637 protein and any commercial antibody for detecting it in cells and tissues has limited functional studies of zfp637 to date. Here, we developed and optimized an expression system by fusing zfp637 with glutathione S-transferase (GST) to achieve a maximal yield of soluble GST-zfp637 fusion protein in Escherichia coli BL21(DE3) cells. The yield was about 10 mg/l of the original bacterial culture. The recombinant GST-zfp637 fusion protein was purified and used for polyclonal antibody production in rabbits. In addition, we developed a method to remove the anti-GST antibody component and obtained a highly purified anti-zfp637 antibody, as demonstrated by an enzyme-linked immunosorbent assay. Western blotting showed that the anti-zfp637 antibody recognized not only the recombinant zfp637 protein but also endogenous zfp637 in several cell lines. The protein was localized mainly in the cell nucleus by immunofluorescence and immunohistochemistry. The expression levels of zfp637 mRNA and protein were significantly increased in NIH3T3 cells treated with 200 μM of H2O2 in a time-dependent manner. The recombinant GST-zfp637 fusion protein and our purified anti-zfp637 antibody will help in elucidating the function of zfp637.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beyer TA, Xu W, Teupser D, Auf dem Keller U, Bugnon P, Hildt E, Thiery J, Kan YW, Werner S (2008) Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance. EMBO J 27:212–223. doi:10.1038/sj.emboj.7601950

    Article  CAS  Google Scholar 

  • Cheng CH, Lee WC (2010) Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins. Microb Cell Fact 9:63. doi:10.1186/1475-2859-9-63

    Article  Google Scholar 

  • Davis GD, Elisee C, Newham DM, Harrison RG (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382–388. doi:10.1002/(SICI)1097-0290(19991120)65:4<382::AID-BIT2>3.0.CO;2-I

    Article  CAS  Google Scholar 

  • Dergousova NI, Amerik AY, Volynskaya AM, Rumsh LD (1996) HIV-I protease. Cloning, expression, and purification. Appl Biochem Biotechnol 61:97–107. doi:10.1007/BF02785692

    Article  CAS  Google Scholar 

  • Deschênes F, Massip L, Garand C, Lebel M (2005) In vivo misregulation of genes involved in apoptosis, development and oxidative stress in mice lacking both functional Werner syndrome protein and poly(ADP-ribose) polymerase-1. Hum Mol Genet 14:3293–3308. doi:10.1093/hmg/ddi362

    Article  Google Scholar 

  • Dümmler A, Lawrence A, de Marco A (2005) Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microb Cell Fact 4:34. doi:10.1186/1475-2859-4-34

    Article  Google Scholar 

  • Frangioni JV, Neel BG (1993) Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem 210:179–187. doi:10.1006/abio.1993.1170

    Article  CAS  Google Scholar 

  • Harper S, Speicher DW (2011) Purification of proteins fused to glutathione S-transferase. Methods Mol Biol 681:259–280. doi:10.1007/978-1-60761-913-0_14

    Article  CAS  Google Scholar 

  • Hartman J, Daram P, Frizzell RA, Rado T, Benos DJ, Sorscher EJ (1992) Affinity purification of insoluble recombinant fusion proteins containing glutathione-S-transferase. Biotechnol Bioeng 39:828–832. doi:10.1002/bit.260390805

    Article  CAS  Google Scholar 

  • Higashi Y, Asanuma M, Miyazaki I, Haque ME, Fujita N, Tanaka K, Ogawa N (2002) The p53-activated gene, PAG608, requires a zinc finger domain for nuclear localization and oxidative stress-induced apoptosis. J Biol Chem 277:42224–42232. doi:10.1074/jbc.M203594200

    Article  CAS  Google Scholar 

  • Ideno A, Furutani M, Iwabuchi T, Iida T, Iba Y, Kurosawa Y, Sakuraba H, Ohshima T, Kawarabayashi Y, Maruyama T (2004) Expression of foreign proteins in Escherichia coli by fusing with an archaeal FK506 binding protein. Appl Microbiol Biotechnol 64:99–105. doi:10.1007/s00253-003-1459-4

    Article  CAS  Google Scholar 

  • Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674. doi:10.1110/ps.8.8.1668

    Article  CAS  Google Scholar 

  • Kiefhaber T, Rudolph R, Kohler HH, Buchner J (1991) Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Biotechnology (N Y) 9:825–829. doi:10.1038/nbt0991-825

    Article  CAS  Google Scholar 

  • Kovaleva V, Krynytskyy H, Gout I, Gout R (2011) Recombinant expression, affinity purification and functional characterization of Scots pine defensin 1. Appl Microbiol Biotechnol 89:1093–1101. doi:10.1007/s00253-010-2935-2

    Article  CAS  Google Scholar 

  • LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio Technol 11:187–193. doi:10.1038/nbt0293-187

    CAS  Google Scholar 

  • Li K, Ren JJ, Zhang J, Liu K, Qi YY, Wang XJ, Xiao HY, Lin P (2009) Construction of eukaryotic expression plasmid for a novel zinc finger protein gene Zfp637 and its effect on breast carcinoma cell EMT6. Sichuan Da Xue Xue Bao Yi Xue Ban 40:575–578, 603

    CAS  Google Scholar 

  • Li K, Zhang J, Ren JJ, Wang Q, Yang KY, Xiong ZJ, Mao YQ, Qi YY, Chen XW, Lan F, Wang XJ, Xiao HY, Lin P, Wei YQ (2010) A novel zinc finger protein Zfp637 behaves as a repressive regulator in myogenic cellular differentiation. J Cell Biochem 110:352–362. doi:10.1002/jcb.22546

    CAS  Google Scholar 

  • Nojiri H, Shimizu T, Funakoshi M, Yamaguchi O, Zhou H, Kawakami S, Ohta Y, Sami M, Tachibana T, Ishikawa H, Kurosawa H, Kahn RC, Otsu K, Shirasawa T (2006) Oxidative stress causes heart failure with impaired mitochondrial respiration. J Biol Chem 281:33789–33801. doi:10.1074/jbc.M602118200

    Article  CAS  Google Scholar 

  • Nygren P-A, Stahl S, Uhlén M (1994) Engineering proteins to facilitate bioprocessing. Trends Biotechnol 12:184–188. doi:10.1016/0167-7799(94)90080-9

    Article  CAS  Google Scholar 

  • Park HM, Kim GY, Nam MK, Seong GH, Han C, Chung KC, Kang S, Rhim H (2009) The serine protease HtrA2/Omi cleaves Parkin and irreversibly inactivates its E3 ubiquitin ligase activity. Biochem Biophys Res Commun 387:537–542. doi:10.1016/j.bbrc.2009.07.079

    Article  CAS  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743. doi:10.1074/jbc.M313350200

    Article  CAS  Google Scholar 

  • Ryu H, Lee J, Zaman K, Kubilis J, Ferrante RJ, Ross BD, Neve R, Ratan RR (2003) Sp1 and Sp3 are oxidative stress-inducible, antideath transcription factors in cortical neurons. J Neurosci 23:3597–3606

    CAS  Google Scholar 

  • Schultz T, Martinez L, de Marco A (2006) The evaluation of the factors that cause aggregation during recombinant expression in E. coli is simplified by the employment of an aggregation-sensitive reporter. Microb Cell Fact 5:28. doi:10.1186/1475-2859-5-28

    Article  Google Scholar 

  • Seong YM, Choi JY, Park HJ, Kim KJ, Ahn SG, Seong GH, Kim IK, Kang S, Rhim H (2004) Autocatalytic processing of HtrA2/Omi is essential for induction of caspase-dependent cell death through antagonizing XIAP. J Biol Chem 279:37588–37596. doi:10.1074/jbc.M401408200

    Article  CAS  Google Scholar 

  • Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40. doi:10.1016/0378-1119(88)90005-4

    Article  CAS  Google Scholar 

  • Smith DB, Davern KM, Board PG, Tiu WU, Garcia EG, Mitchell GF (1986) Mr 26,000 antigen of Schistosoma japonicum recognized by resistant WEHI 129/J mice is a parasite glutathione S-transferase. Proc Natl Acad Sci U S A 83:8703–8707. doi:10.1073/pnas.83.22.8703

    Article  CAS  Google Scholar 

  • Sørensen HP, Mortensen KK (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 4:1. doi:10.1186/1475-2859-4-1

    Article  Google Scholar 

  • Tait AR, Straus SK (2011) Overexpression and purification of U24 from human herpesvirus type-6 in E. coli: unconventional use of oxidizing environments with a maltose binding protein-hexahistine dual tag to enhance membrane protein yield. Microb Cell Fact 10:51. doi:10.1186/1475-2859-10-51

    Article  CAS  Google Scholar 

  • Villaverde A, Carrió MM (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 25:1385–1395. doi:10.1023/A:1025024104862

    Article  CAS  Google Scholar 

  • Volontè F, Piubelli L, Pollegioni L (2011) Optimizing HIV-1 protease production in Escherichia coli as fusion protein. Microb Cell Fact 10:53. doi:10.1186/1475-2859-10-53

    Article  Google Scholar 

  • Xu J, Li W, Wu J, Zhang Y, Zhu Z, Liu J, Hu Z (2006) Stability of plasmid and expression of a recombinant gonadotropin-releasing hormone (GnRH) vaccine in Escherichia coli. Appl Microbiol Biotechnol 73:780–788. doi:10.1007/s00253-006-0547-7

    Article  CAS  Google Scholar 

  • Ye T, Lin Z, Lei H (2008) High-level expression and characterization of an anti-VEGF165 single-chain variable fragment (scFv) by small ubiquitin-related modifier fusion in Escherichia coli. Appl Microbiol Biotechnol 81:311–317. doi:10.1007/s00253-008-1655-3

    Article  CAS  Google Scholar 

  • Younce CW, Kolattukudy PE (2010) MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP. Biochem J 426:43–53. doi:10.1042/BJ20090976

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by items (31070675) from the National Natural Science Foundation of China. It was also supported by Sichuan Province Foundation (2010JY0055) from the Science and Technology Department of Sichuan Province.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, K., Wei, Y., Zhang, J. et al. Cytoplasmic expression, antibody production, and characterization of the novel zinc finger protein 637. Appl Microbiol Biotechnol 97, 741–749 (2013). https://doi.org/10.1007/s00253-012-4235-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4235-5

Keywords

Navigation