Skip to main content
Log in

Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, Escherichia coli MG1655 was engineered to produce ethanol and evolved in a laboratory process to obtain an acetate tolerant strain called MS04 (E. coli MG1655: ΔpflB, ΔadhE, ΔfrdA, ΔxylFGH, ΔldhA, PpflB::pdc Zm -adhB Zm , evolved). The growth and ethanol production kinetics of strain MS04 were determined in mineral medium, mainly under non-aerated conditions, supplemented with glucose in the presence of different concentrations of sodium acetate at pH 7.0 and at different values of acid pH and a constant concentration of sodium acetate (2 g/l). Results revealed an increase in the specific growth rate, cell mass formation, and ethanol volumetric productivity at moderate concentrations of sodium acetate (2–10 g/l), in addition to a high tolerance to acetate because it was able to grow and produce a high yield of ethanol in the presence of up to 40 g/l of sodium acetate. Genomic analysis of the ΔpflB evolved strain identified that a chromosomal deletion of 27.3 kb generates the improved growth and acetate tolerance in MG1655 ΔpflB derivative strains. This deletion comprises genes related to the respiration of nitrate, repair of alkylated DNA and synthesis of the ompC gene coding for porin C, cytochromes C, thiamine, and colonic acid. Strain MS04 is advantageous for the production of ethanol from hemicellulosic hydrolysates that contain acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Böck A, Sawers G (1996) Fermentation. In: Neidhardt et al (eds) Escherichia coli and Salmonella, cellular and molecular biology, chapter 18, 2nd edn. American Society for Microbiology Press, Washington DC, pp 262–282

    Google Scholar 

  • Chohnan S, Furukawa H, Fujio T, Nishihara H, Takamura Y (1997) Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria. Appl Environ Microbiol 63:553–560

    CAS  Google Scholar 

  • Cox MP, Peterson DA, Biggs PJ (2010) Solexa QA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform 11:485

    Article  Google Scholar 

  • Cozzone AJ, El-Mansi M (2005) Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli. J Mol Microbiol Biotechnol 9:132–146

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97:6640–6645

    Article  CAS  Google Scholar 

  • Díaz-Guerra M, Esteban M, Martínez JL (1997) Growth of Escherichia coli in acetate as a sole carbon source is inhibited by ankyrin-like repeats present in the 2′,5′-linked oligoadenylate-dependent human RNase L enzyme. FEMS Microbiol Lett 149:107–113

    Article  Google Scholar 

  • Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24:530–536

    Article  CAS  Google Scholar 

  • Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev 2:898–907

    Article  CAS  Google Scholar 

  • Garay-Arroyo A, Covarrubias AA, Clark I, Niño I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63:734–741

    Article  CAS  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Gen Res 8:195–202

    CAS  Google Scholar 

  • Hahm DH, Pan J, Rhee JS (1994) Characterization and evaluation of a pta (phosphotransacetylase)-negative mutant of Escherichia coli HB101 as production host of foreign lipase. Appl Microbiol Biotechnol 181:6656–6663

    Google Scholar 

  • Han K, Hong J, Lim HC (1993) Relieving effects of glycine and methionine from acetic acid inhibition in Escherichia coli fermentations. Biotechnol Bioeng 41:316–324

    Article  CAS  Google Scholar 

  • Hino T, Esaki H, Miwa T, Umemori J (1997) Significance of H + -ATPase in acid tolerance of Escherichia coli. Bull Fac Agr Meiji Univ 113:1–9

    CAS  Google Scholar 

  • Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalyst for fuel ethanol production. Biotechnol Prog 15:855–866

    Article  CAS  Google Scholar 

  • Li J, Mahajan A, Tsai M (2006) Ankyrin repeat: a unique motif protein–protein interactions. Biochem 45:15168–15178

    Article  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Martinez A, Rodríguez ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17:287–293

    Article  CAS  Google Scholar 

  • Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29:397–404

    Article  CAS  Google Scholar 

  • Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26–35

    Article  Google Scholar 

  • Nakano K, Rischke M, Sato S, Märkl H (1997) Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl Microbiol Biotechnol 48:597–601

    Article  CAS  Google Scholar 

  • Neuwald AF, Green P (1994) Detecting patterns in protein sequences. J Mol Biol 239:698–712

    Article  CAS  Google Scholar 

  • Nobelmann B, Lengeler JW (1996) Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J Bacteriol 178(23):6790–6795

    CAS  Google Scholar 

  • O'sullivan E, Condon S (1999) Relationship between acid tolerance, cytoplasmic pH, and ATP and H+-ATPase levels in chemostat cultures of Lactococcus lactis. Appl Environ Microbiol 65(6):2287–2293

    Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    CAS  Google Scholar 

  • Orencio-Trejo M, Utrilla J, Fernández-Sandoval MT, Huerta-Beristain G, Gosset G, Martinez A (2010) Engineering the Escherichia coli fermentative metabolism. Adv Biochem Eng Biotechnol 121:71–107

    CAS  Google Scholar 

  • Presser KA, Ratkowsky DA, Ross T (1997) Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl Environ Microbiol 63:2355–2360

    CAS  Google Scholar 

  • Roe AJ, O’Byrne C, McLaggan D, Booth IR (2002) Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiol 148:2215–2222

    CAS  Google Scholar 

  • Russell JB (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol 73:363–370

    Article  CAS  Google Scholar 

  • Sun L, Fukamachi T, Saito H, Kobayashi H (2005) Carbon dioxide increases acid resistance in Escherichia coli. Lett Appl Microbiol 40:397–400

    Article  CAS  Google Scholar 

  • Takahashi CM, Takahashi DF, Carvalhal MLC, Alterthum F (1999) Effects of acetate on the growth and fermentation performance of Escherichia coli KO11. Appl Biochem Biotechnol 81:193–204

    Article  CAS  Google Scholar 

  • Utrilla J, Gosset G, Martinez A (2009) ATP limitation in a pyruvate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to d-lactate. J Ind Microbiol Biotechnol 36:1057–1062

    Article  CAS  Google Scholar 

  • Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50

    Article  CAS  Google Scholar 

  • Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotech 20:132–138

    Article  CAS  Google Scholar 

  • Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 6:203–210

    Article  Google Scholar 

  • Zaldivar J, Martínez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33

    Article  CAS  Google Scholar 

  • Zhou B, Martin JO, Pamment NB (2008) Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli KO11 when immobilized in continuous fluidized bed culture. Biotechnol Bioeng 100:627–633

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Daniel Díaz-López, César Aguilar, Mercedes Enzaldo, Ramón de Anda, Georgina Hernández-Chávez, Iván Muñoz-Gutíerrez, and José Utrilla for their technical support during the project. This work was supported by the Mexican Council of Science and Technology (CONACyT), grants Proinnova PETRAMIN 2011/154298-2012/181892; FONSEC/SSA 126793 and IMSS/ISSSTE 167756; and DGAPA/PAPIIT/UNAM IN221106 and IT200312-2. Marco T. Fernández-Sandoval held a scholarship from CONACyT.

Competing interests

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Sandoval, M.T., Huerta-Beristain, G., Trujillo-Martinez, B. et al. Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol 96, 1291–1300 (2012). https://doi.org/10.1007/s00253-012-4177-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4177-y

Keywords

Navigation