Skip to main content
Log in

Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In an effort to produce ricinoleic acid (12-hydroxy-octadeca-cis-9-enoic acid: C18:1-OH) as a petrochemical replacement in a variety of industrial processes, we introduced Claviceps purpurea oleate ∆12-hydroxylase gene (CpFAH12) to Schizosaccharomyces pombe, putting it under the control of inducible nmt1 promoter. Since Fah12p is able to convert oleic acid to ricinoleic acid, we thought that S. pombe, in which around 75% of total fatty acid (FA) is oleic acid, would accordingly be an ideal microorganism for high production of ricinoleic acid. Unfortunately, at the normal growth temperature of 30 °C, S. pombe cells harboring CpFAH12 grew poorly when the CpFAH12 gene expression was induced, perhaps implicating ricinoleic acid as toxic in S. pombe. However, in line with a likely thermoinstability of Fah12p, there was almost no growth inhibition at 37 °C or, by contrast with 30 °C and lower temperatures, ricinoleic acid accumulation. Accordingly, various optimization steps led to a regime with preliminary growth at 37 °C followed by a 5-day incubation at 20 °C, and the level of ricinoleic acid reached 137.4 μg/ml of culture that corresponded to 52.6% of total FA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfa C, Fantes P, Hyams J, McLeod M, Warbrick E (1993) Experiments with fission yeast: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Attrapadung S, Yoshida J, Kimura K, Mizunuma M, Miyakawa T, Thanomsub BW (2010) Identification of ricinoleic acid as an inhibitor of Ca2+ signal-mediated cell-cycle regulation in budding yeast. FEMS Yeast Res 10:38–43

    Article  CAS  Google Scholar 

  • Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S (1991) Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. Biochem J 280:507–514

    CAS  Google Scholar 

  • Broun P, Somerville C (1997) Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol 113:933–942

    Article  CAS  Google Scholar 

  • Broun P, Boddupalli S, Somerville C (1998) A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Plant J 13:201–210

    Article  CAS  Google Scholar 

  • Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6:819–831

    Article  CAS  Google Scholar 

  • Forsburg SL (1993) Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res 21:2955–2956

    Article  CAS  Google Scholar 

  • Galliard T, Stumpf PK (1966) Fat metabolism in higher plants. 30. Enzymatic synthesis of ricinoleic acid by a microsomal preparation from developing Ricinus communis seeds. J Biol Chem 241:5806–5812

    CAS  Google Scholar 

  • Giga-Hama Y, Tohda H, Okada K, Owada MK Okayama H, Kumagai H (1994) High-level expression of human lipocortin I in the fission yeast Schizosaccharomyces pombe using a novel expression vector. Biotechnol (NY) 12:400–404

    Article  CAS  Google Scholar 

  • Giga-Hama Y, Tohda H, Takegawa K, Kumagai H (2007) Schizosaccharomyces pombe minimum genome factory. Biotechnol Appl Biochem 46:147–155

    Article  CAS  Google Scholar 

  • Idiris A, Tohda H, Bi KW, Isoai A, Kumagai H, Giga-Hama Y (2006) Enhanced productivity of protease-sensitive heterologous proteins by disruption of multiple protease genes in the fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 73:404–420

    Article  CAS  Google Scholar 

  • Idiris A, Tohda H, Sasaki M, Okada K, Kumagai H, Giga-Hama Y, Takegawa K (2010a) Enhanced protein secretion from multiprotease-deficient fission yeast by modification of its vacuolar protein sorting pathway. Appl Microbiol Biotechnol 85:667–677

    Article  CAS  Google Scholar 

  • Idiris A, Tohda H, Kumagai H, Takegawa K (2010b) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86:403–417

    Article  CAS  Google Scholar 

  • Ikeda S, Nikaido K, Araki K, Yoshitake A, Kumagai H, Isoai A (2004) Production of recombinant human lysosomal acid lipase in Schizosaccharomyces pombe: development of a fed-batch fermentation and purification process. J Biosci Bioeng 98:366–373

    CAS  Google Scholar 

  • Isoai A, Kimura H, Reichert A, Schörgendorfer K, Nikaido K, Tohda H, Giga-Hama Y, Mutoh N, Kumagai H (2002) Production of D-amino acid oxidase (DAO) of Trigonopsis variabilis in Schizosaccharomyces pombe and the characterization of biocatalysts prepared with recombinant cells. Biotechnol Bioeng 80:22–32

    Article  CAS  Google Scholar 

  • Kainou K, Kamisak Y, Kimura K, Uemura H (2006) Isolation of ∆12 and ω3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and α-linolenic acids in Saccharomyces cerevisiae. Yeast 23:605–612

    Article  CAS  Google Scholar 

  • Kamisaka Y, Noda N, Tomita N, Kimura K, Kodaki T, Hosaka K (2006) Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 70:646–653

    Article  CAS  Google Scholar 

  • Kamisaka Y, Tomita N, Kimura K, Kainou K, Uemura H (2007) DGA1 overexpression and leucine biosynthesis significantly increase lipid accumulation in the delta-snf2 disruptant of Saccharomyces cerevisiae. Biochem J 408:61–68

    Article  CAS  Google Scholar 

  • Kumar R, Wallis JG, Skidmore C, Browse J (2006) A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation. Plant J 48:920–932

    Article  CAS  Google Scholar 

  • Lu C, Fulda M, Wallis JG, Browse J (2006) A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis. Plant J 45:847–856

    Article  CAS  Google Scholar 

  • Meesapyodsuk D, Qiu X (2008) An oleate hydroxylase from the fungus Claviceps purpurea: cloning, functional analysis, and expression in Arabidopsis. Plant Physiol 147:1325–1333

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Smith MA, Moon H, Chowrira G, Kunst L (2003) Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Planta 217:507–516

    Article  CAS  Google Scholar 

  • Takegawa K, Tohda H, Sasaki M, Idris A, Ohashi T, Mukaiyama H, Giga-Hama Y, Kumagai H (2009) Production of heterologous proteins using the fission-yeast (Schizosaccharomyces pombe) expression system. Biotechnol Appl Biochem 53:227–235

    Article  CAS  Google Scholar 

  • van de Loo FJ, Broun P, Turner S, Somerville C (1995) An oleate 12-hydroxylase from Ricinus communis L is a fatty acyl desaturase homolog. Proc Natl Acad Sci USA 92:6743–6747

    Article  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O'Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schafer M, Muller-Auer S, Gabel C, Fuchs M, Dusterhoft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dreano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sánchez M, del Rey F, Benito J, Domínguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    Article  CAS  Google Scholar 

  • Yazawa H, Iwahashi H, Kamisaka Y, Kimura K, Aki K, Ono T, Uemura H (2007) Heterologous production of dihomo-gamma-linolenic acid in yeast Saccharomyces cerevisiae. Appl Environ Microbiol 73:6965–6971

    Article  CAS  Google Scholar 

  • Yazawa H, Iwahashi H, Kamisaka Y, Kimura K, Uemura H (2010) Improvement of polyunsaturated fatty acids synthesis by the co-expression of CYB5 with desaturase genes in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:2185–2193

    Article  CAS  Google Scholar 

  • Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–2301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A part of this work was supported by the A-STEP (Adaptable and Seamless Technology transfer Program through target-driven R&D) research grant from Japan Science an122222d Technology Agency (JST) to HK and HU. RH was a recipient of “JSPS Postdoctoral Fellowship for Foreign Researchers” from the Japan Society for the Promotion of Science. We wish to thank Masakazu Yamaoka, Yasushi Kamisaka, and Kazuyoshi Kimura for continuous encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Uemura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holic, R., Yazawa, H., Kumagai, H. et al. Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe . Appl Microbiol Biotechnol 95, 179–187 (2012). https://doi.org/10.1007/s00253-012-3959-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3959-6

Keywords

Navigation