Skip to main content
Log in

Enzymatic biotransformation of ginsenoside Rb1 to 20(S)-Rg3 by recombinant β-glucosidase from Microbacterium esteraromaticum

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbacterium esteraromaticum was isolated from ginseng field. The β-glucosidase gene (bgp1) from M. esteraromaticum was cloned and expressed in Escherichia coli BL21 (DE3). The bgp1 gene consists of 2,496 bp encoding 831 amino acids which have homology to the glycosyl hydrolase family 3 protein domain. The recombinant β-glucosidase enzyme (Bgp1) was purified and characterized. The molecular mass of purified Bgp1 was 87.5 kDa, as determined by SDS-PAGE. Using 0.1 mg ml−1 enzyme in 20 mM sodium phosphate buffer at 37°C and pH 7.0, 1.0 mg ml−1 ginsenoside Rb1 was transformed into 0.444 mg ml−1 ginsenoside Rg3 within 6 h. The Bgp1 sequentially hydrolyzed the outer and inner glucose attached to the C-20 position of ginsenosides Rb1. Bgp1 hydrolyzed the ginsenoside Rb1 along the following pathway: Rb1 → Rd → 20(S)-Rg3. This is the first report of the biotransformation of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 using the recombinant β-glucosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreea Neculai M, Ivanov D, Bernards MA (2009) Partial purification and characterization of three ginsenoside-metabolizing beta-glucosidases from Pythium irregulare. Phytochemistry 70:1948–1957

    Article  CAS  Google Scholar 

  • Cheng LQ, Na JR, Kim MK, Bang MH, Yang DC (2007) Microbial conversion of ginsenoside Rb1 to minor ginsenoside F2 and gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. J Microbiol Biotechnol 17:1937–1943

    CAS  Google Scholar 

  • Cho W, Chung W, Lee S, Leung A, Cheng C, Yue K (2006) Ginsenoside Re of Panax ginseng possesses significant antioxidant and anti-hyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur J Pharmacol 550:173–179

    Article  CAS  Google Scholar 

  • Kim ND, Kim EM, Kang KW, Cho MK, Choi SY, Kim SG (2003) Ginsenoside Rg3 inhibits phenylephrine-induced vascular contraction through induction of nitric oxide synthase. Brit J Pharmacol 140:661–670

    Article  CAS  Google Scholar 

  • Kim S, Lee Y, Park J, Lee S (1999) Ginsenoside-Rs4, a new type of ginseng saponin concurrently induces apoptosis and selectively elevates protein levels of p53 and p21WAF1 in human hepotoma SK-HEP-1 cells. Eur J Cancer 35:507–511

    Article  CAS  Google Scholar 

  • Kim SJ, Lee CM, Kim MY, Yeo YS, Yoon SH, Kang HC, Koo BS (2007) Screening and characterization of an enzyme with beta-glucosidase activity from environmental DNA. J Microbiol Biotechnol 17:905–912

    CAS  Google Scholar 

  • Ko SR, Suzuki Y, Suzuki K, Choi KJ, Cho BG (2007) Marked production of ginsenosides Rd, F2, Rg3, and compound K by enzymatic method. Chem Pharm Bull (Tokyo) 55:1522–1527

    Article  CAS  Google Scholar 

  • Lee HU, Bae EA, Han MJ, Kim DH (2005) Hepatoprotective effect of 20(S)-ginsenosides Rg3 and its metabolite 20(S)-ginsenoside Rh2 on tert-butyl hydroperoxide-induced liver injury. Biol Pharm Bull 28:1992–1994

    Article  CAS  Google Scholar 

  • Lee K, Lee Y, Kim S, Park J, Lee S (1997) Ginsenoside-Rg5 suppresses cyclin E-dependent protein kinase activity via up-regulation of p21 Cip/WAF1 and down-regulating cyclin E in SKHEP-1 cells. Anticancer Res 17:1067–1072

    CAS  Google Scholar 

  • Ligor T, Ludwiczuk A, Wolski T, Buszewski B (2005) Isolation and determination of ginsenosides in American ginseng leaves and root extracts by LC-MS. Anal Bioanal Chem 383:1098–1105

    Article  CAS  Google Scholar 

  • Liu W, Xu S, Che C (2000) Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci 67:1297–130

    Article  CAS  Google Scholar 

  • Mochizuki M, Yoo YC, Matsuzawa K (1995) Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside Rb2, 20(R)- and 20(S)-ginsenoside Rg3, of red ginseng. Biol Pharm Bull 18:1197–1202

    Article  CAS  Google Scholar 

  • Noh KH, Oh DK (2009) Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable beta-glycosidase from Sulfolobus acidocaldarius. Biol Pharm Bull 32:1830–1835

    Article  CAS  Google Scholar 

  • Noh KH, Son JW, Kim HJ, Oh DK (2009) Ginsenoside compound K production from ginseng root extract by a thermostable beta-glycosidase from Sulfolobus solfataricus. Biosci Biotechnol Biochem 73:316–321

    Article  CAS  Google Scholar 

  • Park SY, Bae EA, Sung JH, Lee SK, Kim DH (2001) Purification and characterization of ginsenoside Rb1-metabolizing beta-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci Biotechnol Biochem 65:1163–1169

    Article  CAS  Google Scholar 

  • Shinkai K, Akedo H, Mukai M, Imamura F, Isoai A, Kobayashi M, Kitagawa I (1996) Inhibition of in vitro tumor cell invasion by ginsenoside Rg3. Jpn J Cancer Res 87:357–362

    Article  CAS  Google Scholar 

  • Son JW, Kim HJ, Oh DK (2008) Ginsenoside Rd production from the major ginsenoside Rb1 by beta-glucosidase from Thermus caldophilus. Biotechnol Lett 30:713–716

    Article  CAS  Google Scholar 

  • Tian JW, Fu FH, Geng MY, Jiang YT, Yang JX, Jiang WL, Wang CY, Liu K (2005) Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett 374:92–97

    Article  CAS  Google Scholar 

  • Varghese JN, Hrmova M, Fincher GB (1999) Three-dimensional structure of a barley beta-D-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure 15(2):179–190

    Article  Google Scholar 

  • Yan Q, Zhou W, Li X, Feng M, Zhou P (2008a) Purification method improvement and characterization of a novel ginsenosidehydrolyzing beta-glucosidase from Paecilomyces Bainier sp. 229. Biosci Biotechnol Biochem 72:352–359

    Article  CAS  Google Scholar 

  • Yan Q, Zhou XW, Zhou W, Li XW, Feng MQ, Zhou P (2008b) Purification and properties of a novel beta-glucosidase, hydrolyzing ginsenoside Rb1 to compound K, from Paecilomyces Bainier. J Microbiol Biotechnol 18:1081–1089

    CAS  Google Scholar 

  • Yoo MH, Yeom SJ, Park CS, Lee KW, Oh DK (2011) Production of aglycon protopanaxadiol via compound K by a thermostable β-glycosidase from Pyrococcus furiosus. Appl Microbiol Biotechnol 89:1019–1028

    Article  CAS  Google Scholar 

  • Yu H, Zhang C, Lu M, Sun F, Fu Y, Jin F (2007) Purification and characterization of new special ginsenosidase hydrolyzing multiglycisides of protopanaxadiol ginsenosides, ginsenosidase type I. Chem Pharm Bull 55:231–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant # PJ008204), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Chun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, LH., Min, JW., Yang, DU. et al. Enzymatic biotransformation of ginsenoside Rb1 to 20(S)-Rg3 by recombinant β-glucosidase from Microbacterium esteraromaticum . Appl Microbiol Biotechnol 94, 377–384 (2012). https://doi.org/10.1007/s00253-011-3861-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3861-7

Keywords

Navigation