Skip to main content
Log in

Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the industrial yeast biomass production process, cells undergo an oxidative and other stresses which worsen the quality of the produced biomass. The overexpression of the thioredoxin codifying gene TRX2 in a wine Saccharomyces cerevisiae strain increases resistance to oxidative stress and industrial biomass production yield. We observed that variations in the TRX2 gene dose in wine yeast strains are relevant to determine the fermentative capacity throughout the industrial biomass production process. So, we studied the molecular changes using a transcriptomic approach under these conditions. The results provide an overview of the different metabolic pathways affected during industrial biomass production by TRX2 gene manipulation. The oxidative stress-related genes, like those related with the glutathione metabolism, presented outstanding variations. The data also allowed us to propose new thioredoxin targets in S. cerevisiae, such as hexokinase 2, with relevance for industrial fermentation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahuatzi D, Herrero P, de la CT, Moreno F (2004) The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent. J Biol Chem 279:14440–14446

    Google Scholar 

  • Ashe MP, De Long SK, Sachs AB (2000) Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell 11:833–848

    CAS  Google Scholar 

  • Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735

    Google Scholar 

  • Boisnard S, Lagniel G, Garmendia-Torres C, Molin M, Boy-Marcotte E, Jacquet M, Toledano MB, Labarre J, Chedin S (2009) H2O2 activates the nuclear localization of Msn2 and Maf1 through thioredoxins in Saccharomyces cerevisiae. Eukaryot Cell 8:1429–1438

    Article  CAS  Google Scholar 

  • Cohen BA, Pilpel Y, Mitra RD, Church GM (2002) Discrimination between paralogs using microarray analysis: application to the Yap1p and Yap2p transcriptional networks. Mol Biol Cell 13:1608–1614

    Article  CAS  Google Scholar 

  • de la Cera HP, Moreno-Herrero F, Chaves RS, Moreno F (2002) Mediator factor Med8p interacts with the hexokinase 2: implication in the glucose signalling pathway of Saccharomyces cerevisiae. J Mol Biol 319:703–714

    Article  Google Scholar 

  • De Winde JH, Crauwels M, Hohmann S, Thevelein JM, Winderickx J (1996) Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur J Biochem 241:633–643

    Article  Google Scholar 

  • Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB (2002) A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–481

    Article  CAS  Google Scholar 

  • Demasi AP, Pereira GA, Netto LE (2006) Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state. FEBS J 273:805–816

    Article  CAS  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  CAS  Google Scholar 

  • Fernandes L, Rodrigues-Pousada C, Struhl K (1997) Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 17:6982–6993

    CAS  Google Scholar 

  • Finley D, Ozkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046

    Article  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  CAS  Google Scholar 

  • Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Matallana E (2010a) Transcriptomic and proteomic insights of the wine yeast biomass propagation process. FEMS Yeast Res 10:878–884

    Article  Google Scholar 

  • Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E (2010b) Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Microb Cell Fact 9:9

    Article  Google Scholar 

  • Gómez-Pastor R, Pérez-Torrado R, Matallana E (2010c) Improving yield of industrial biomass propagation by increasing the Trx2p dosage. Bioengineered Bugs 1:352–353

    Article  Google Scholar 

  • Grant CM (2008) Metabolic reconfiguration is a regulated response to oxidative stress. J Biol 7:1

    Article  Google Scholar 

  • Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  Google Scholar 

  • Hasan R, Leroy C, Isnard AD, Labarre J, Boy-Marcotte E, Toledano MB (2002) The control of the yeast H2O2 response by the Msn2/4 transcription factors. Mol Microbiol 45:233–241

    Article  CAS  Google Scholar 

  • He XJ, Mulford KE, Fassler JS (2009) Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain. Eukaryot Cell 8:768–778

    Article  CAS  Google Scholar 

  • Herrero P, Galíndez J, Ruiz N, Martínez-Campa C, Moreno F (1995) Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes. Yeast 11:137–144

    Article  CAS  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    CAS  Google Scholar 

  • Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274:27002–27009

    Article  CAS  Google Scholar 

  • Izawa S, Maeda K, Sugiyama K, Mano J, Inoue Y, Kimura A (1999) Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem 274:28459–28465

    Article  CAS  Google Scholar 

  • Koc A, Mathews CK, Wheeler LJ, Gross MK, Merrill GF (2006) Thioredoxin is required for deoxyribonucleotide pool maintenance during S phase. J Biol Chem 281:15058–15063

    Article  CAS  Google Scholar 

  • Kohrer K, Domdey H (1991) Preparation of high-molecular-weight RNA. Methods Enzymol 194:398–405

    Article  CAS  Google Scholar 

  • Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655–664

    CAS  Google Scholar 

  • Kuge S, Jones N, Nomoto A (1997) Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 16:1710–1720

    Article  CAS  Google Scholar 

  • Kumar JK, Tabor S, Richardson CC (2004) Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc Natl Acad Sci U S A 101:3759–3764

    Article  CAS  Google Scholar 

  • Martínez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    Google Scholar 

  • Mason JT, Kim SK, Knaff DB, Wood MJ (2006) Thermodynamic basis for redox regulation of the Yap1 signal transduction pathway. Biochemistry 45:13409–13417

    Article  CAS  Google Scholar 

  • Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ, Buchanan BB (2009) Thioredoxin targets in plants: the first 30 years. J Proteomics 72:452–474

    Article  CAS  Google Scholar 

  • Muller EG (1991) Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J Biol Chem 266:9194–9202

    CAS  Google Scholar 

  • Özcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    Google Scholar 

  • Pérez-Torrado R, Bruno-Barcena JM, Matallana E (2005) Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Appl Environ Microbiol 71:6831–6837

    Article  Google Scholar 

  • Pérez-Torrado R, Gómez-Pastor R, Larsson C, Matallana E (2009) Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Appl Microbiol Biotechnol 81:951–960

    Article  Google Scholar 

  • Praekelt UM, Meacock PA (1990) HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet 223:97–106

    Article  CAS  Google Scholar 

  • Puig S, Ramón D, Pérez-Ortin JE (1998) Optimized method to obtain stable food-safe recombinant wine yeast strains. J Agri Food Chem 46:1689–1693

    Article  CAS  Google Scholar 

  • Querol A, Barrio E, Huerta T, Ramon D (1992) Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol 58:2948–2953

    CAS  Google Scholar 

  • Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10

    Article  Google Scholar 

  • Randez-Gil F, Sanz P, Entian KD, Prieto JA (1998) Carbon source-dependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast. Mol Cell Biol 18:2940–2948

    CAS  Google Scholar 

  • Rodriguez A, de la Cera T, Herrero P, Moreno F (2001) The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 355:625–631

    CAS  Google Scholar 

  • Rodrigues-Pousada CA, Nevitt T, Menezes R, Azevedo D, Pereira J, Amaral C (2004) Yeast activator proteins and stress response: an overview. FEBS Lett 567:80–85

    Article  CAS  Google Scholar 

  • Rose M, Albig W, Entian KD (1991) Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII. Eur J Biochem 199:511–518

    Article  CAS  Google Scholar 

  • Schwob E, Nasmyth K (1993) CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev 7:1160–1175

    Article  CAS  Google Scholar 

  • Shima J, Kuwazaki S, Tanaka F, Watanabe H, Yamamoto H, Nakajima R, Tokashiki T, Tamura H (2005) Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis. Int J Food Microbiol 102:63–71

    Article  CAS  Google Scholar 

  • Trotter EW, Grant CM (2002) Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae. Mol Microbiol 46:869–878

    Article  CAS  Google Scholar 

  • Veal EA, Ross SJ, Malakasi P, Peacock E, Morgan BA (2003) Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J Biol Chem 278:30896–30904

    Article  CAS  Google Scholar 

  • Yu FX, Chai TF, He H, Hagen T, Luo Y (2010) Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem 285:25822–25830

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants AGL 2005-00508 and AGL 2008-00060 from the Spanish Ministry of Education and Science (MEC). R.G-P. was a predoctoral fellow of the I3P program from the CSIC (Spanish National Research Council). We thank the Proteomic and Transcriptomic Service of the Institute of Agrochemistry and Food Technology (IATA, CSIC) for their support in the transcriptomic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Matallana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Pastor, R., Pérez-Torrado, R. & Matallana, E. Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production. Appl Microbiol Biotechnol 94, 773–787 (2012). https://doi.org/10.1007/s00253-011-3738-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3738-9

Keywords

Navigation