Skip to main content
Log in

Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 13 December 2011

Abstract

Corynebacterium glutamicum, the industrial microbe traditionally used for the production of amino acids, proved its value for the fermentative production of diverse products through genetic/metabolic engineering. A successful demonstration of the heterologous expression of arabinose and xylose utilization genes made them interesting biocatalysts for pentose fermentation, which are the main components in lignocellulosic hydrolysates. Its ability to withstand substantial amount of general growth inhibitors like furfurals, hydroxyl methyl furfurals and organic acids generated from the acid/alkali hydrolysis of lignocellulosics in growth arrested conditions and its ability to produce amino acids like glutamate and lysine in acid hydrolysates of rice straw and wheat bran, indicate the future prospective of this bacterium as a potent biocatalyst in fermentation biotechnology. However, the efforts so far on these lines have not yet been reviewed, and hence an attempt is made to look into the efficacy and prospects of C. glutamicum to utilize the normally non-fermentable pentose sugars from lignocellulosic biomass for the production of commodity chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467. doi:10.1016/j.copbio.2008.08.002

    Article  CAS  Google Scholar 

  • Anuj KC, Gajula C, Konakalla R, Rudravaram R, Pogaku R (2011) Bioconversion of pentose sugars into ethanol: a review and future direction. Biotechnol Mol Biol Rev 6:8–20

    Google Scholar 

  • Arndt A, Eikmanns BJ (2008) Regulation of carbon metabolism in Corynebacterium glutamicum. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Wymondham, pp 155–182

    Google Scholar 

  • Arndt A, Auchter M, Ishiqe T, Wendisch VF, Eikmanns BJ (2008) Ethanol catabolism in Corynebacterium glutamicum. J Mol Microbiol Biotechnol 15:222–233. doi:10.1159/000107370

    Article  CAS  Google Scholar 

  • Arslan Y, Eken-Saracogl N (2010) Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol. Bioresour Technol 101:8664–8670. doi:10.1016/j.biortech.2010.05.085

    Article  CAS  Google Scholar 

  • Blombach B, Seibold GM (2010) Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of l-lysine production strains. Appl Microbiol Biotechnol 86:1313–1322. doi:1007/s00253-010-2537-z

    Article  CAS  Google Scholar 

  • Blombach B, Riester T, Wieschalka S, Ziert C, Youn J, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310. doi:10.1128/AEM.02972-10

    Article  CAS  Google Scholar 

  • Brinkrolf K, Plöger S, Solle S, Brune I, Nentwich SS, Hüser AT, Kalinowski J, Pühler A, Tauch A (2008) The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Microbiol 154:1068–1081

    Article  CAS  Google Scholar 

  • Burkovski A (2008) Corynebacteria: genomics and molecular biology. Caister, Academic Press, Erlangen, Germany

    Google Scholar 

  • Cimpeanu C, Campeanu G, Begea M, Vladescu M, Cornea CP (2010) Bio ethanol production by new thermotolerant Romanian yeast strains. Rom Biotechnol Lett 15(3):5310–5316

    CAS  Google Scholar 

  • Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose–xylose mixtures. Biotechnol Bioeng 95:1167–1176. doi:10.1002/bit.21082

    Article  CAS  Google Scholar 

  • Collins MD, Cummins CS (1984) Genus Corynebacterium. ed. Trans. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, MD, pp 1266–1283

    Google Scholar 

  • Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y (2003) Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Appl Environ Microbiol 69:3011–3014. doi:10.1128/AEM.69.5.3011-3014.2003

    Article  CAS  Google Scholar 

  • Date M, Itaya H, Matsui HY (2006) Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett Appl Microbiol 42:66–70. doi:10.1111/j.1472-765X.2005.01802.x

    Article  CAS  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266. doi:10.1007/s00253-003-1444-y

    Article  CAS  Google Scholar 

  • Dominguez H, Lindley ND (1996) Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl Environ Microbiol 62:3878–3880

    CAS  Google Scholar 

  • Dominguez H, Cocaign-Bousquet M, Lindley ND (1997) Simultaneous consumption of glucose and fructose from sugar mixtures during batch growth of Corynebacterium glutamicum. Appl Microbiol Biot 47(5):600–603

    Article  CAS  Google Scholar 

  • Doo EH, Lee WH, Seo HS, Seo JS, Park JB (2009) Productivity of cyclohexanone oxidation of the recombinant Corynebacterium glutamicum expressing chnB of Acinetobacter calcoaceticus. J Biotechnol 142:164–169. doi:10.1016/j.jbiotec.2009.04.008

    Article  CAS  Google Scholar 

  • Eggeling L, Bott M (2005). Handbook of Corynebacterium glutamicum. CRC Boca Raton

  • Engels V, Georgi T, Wendisch VF (2008) ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum. FEMS Microbiol Lett 289(1):80–89

    Article  CAS  Google Scholar 

  • Fang X, Huang W, Xia L (2004) Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp. Sheng Wu Gong Cheng Xue Bao 20:295–298

    CAS  Google Scholar 

  • Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM (2011) Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3478-x

  • Grabar TB, Zhou S, Shanmugam KT, Yomano LP, Ingram LO (2006) Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(−)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28:1527–1535

    Article  CAS  Google Scholar 

  • Granstrom TB, Izumori K, Leisola M (2007) A rare sugar xylitol: Part II. Biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74(2):273–276. doi:10.1007/s00253-006-0760-4

    Article  Google Scholar 

  • Gururajan VT, Van Rensburgi P, Hahn-Hagerdal B, Pretorius IS, Otero RRC (2007) Development and characterisation of a recombinant Saccharomyces cerevisiae mutant strain with enhanced xylose fermentation properties. Ann Microbiol 57(4):599–607

    Article  Google Scholar 

  • Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martinz I, Gorwa-Grauslund MF (2007a) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953. doi:10.1007/s00253-006-0827-2

    Article  Google Scholar 

  • Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007b) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:147–177. doi:10.1007/10_2007_062

    Google Scholar 

  • Harhangi HR, Akhmanova AS, Emmens R, Van der Drift C, De Laat WTAM, Van Dijken JP, Jetten MSM, Pronk JT, Op den Camp HJM (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 180:134–141. doi:10.1007/s00203-003-0565-0

    Article  CAS  Google Scholar 

  • Helle SS, Murray A, Lam J, Cameron DR, Duff SJB (2004) Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresour Technol 92(2):163–171. doi:10.1016/j.biortech.2003.08.011

    Article  CAS  Google Scholar 

  • Ikeda M, Katsumata R (1992) Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl Environ Microbiol 58(3):781–785

    CAS  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62(2–3):99–109. doi:10.1007/s00253-003-1328-1

    Article  CAS  Google Scholar 

  • Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S (2006) A genome-based approach to create a minimally mutated, Corynebacterium glutamicm strain for efficient l-lysine production. J Ind Microbiol Biotechnol 33(7):610–615. doi:10.1007/s10295-006-0104-5

    Article  CAS  Google Scholar 

  • Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum l-arginine and l-citrulline producer. Appl Environ Microbiol 75(6):1635–1641. doi:10.1128/AEM.02027-08

    Article  CAS  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H (2004a) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8(4):243–254. doi:10.1159/000086705

    Article  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H (2004b) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7(4):182–196. doi:10.1159/000079827

    Article  CAS  Google Scholar 

  • Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101:881–893

    Article  CAS  Google Scholar 

  • Jeffries TW, Shi NQ, Jin YS, Cruz J (2000) metabolic pathway engineering for improved xylose fermentation by yeasts. Abstracts of Papers of the American Chemical Society, 219, 32-BTEC

    Google Scholar 

  • Jo S, Maeda M, Ooi TS (2006) Production system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum. J Biosci Bioeng 102:233–236. doi:10.1263/jbb.102.233

    Article  CAS  Google Scholar 

  • Jojima T, Fujii M, Mori E, Inui M, Yukawa H (2010) Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid l-alanine under oxygen deprivation. Appl Microbiol Biotechnol 87(1):159–165. doi:10.1007/s00253-010-2493-7

    Article  CAS  Google Scholar 

  • Kadam KL, Chin CY, Brown LW (2008) Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. J Ind Microbiol Biotechnol 35(5):331–341. doi:10.1007/s10295-008-0322-0

    Article  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104(1–3):5–25. doi:10.1016/S0168-1656(03)00154-8

    Article  CAS  Google Scholar 

  • Kato O, Youn JW, Stansen KC, Matsui D, Oikawa TVF (2010) Quinone-dependent d-lactate dehydrogenase Dld(Cg1027) is essential for growth of Corynebacterium glutamicum on d-lactate. BMC Microbiol 10:321

    Article  CAS  Google Scholar 

  • Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72(5):3418–3428. doi:10.1128/AEM.72.5.3418-3428.2006

    Article  CAS  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H (2008) Engineering of an l-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77(5):1053–1062. doi:10.1007/s00253-007-1244-x

    Article  CAS  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H (2009) Identification and functional analysis of the gene cluster for l-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol 75:3419–3429. doi:10.1128/AEM.02912-08

    Article  CAS  Google Scholar 

  • Kikuchi Y, Date M, Yokoyama K, Umezawa Y (2003) Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-domain by a co-secreted subtilisin-like protease from Streptomycesalbo griseolus. Appl Environ Microbiol 69:358–366. doi:10.1128/AEM.69.1.358366.2003

    Article  CAS  Google Scholar 

  • Kim TB, Lee YJ, Kim P, Kim CS, Oh DK (2004) Increased xylitol production rate during long-term cell recycle fermentation of Candida tropicalis. Biotechnol Lett 26(8):623–627. doi:10.1023/B:BILE.0000023019.02411.54

    Article  CAS  Google Scholar 

  • Kim SH, Yun JY, Kim SG, Seo JH, Park JB (2010) Production of xylitol from d-xylose and glucose with recombinant Corynebacterium glutamicum. Enzyme Microb Technol 46(5):366–371. doi:10.1016/j.enzmictec.2009.12.012

    Article  CAS  Google Scholar 

  • Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL, Solomon NA (eds) Biology of industrial microorganisms. Benjamin Cummings Pub, London, pp 115–146

    Google Scholar 

  • Ko CH, Chun P, Lin C, Hao K (2008) Xylitol conversion by fermentation using five yeast strains and polyelectrolyte-assisted ultrafiltration. Biotechnol Lett 30:81–86. doi:10.1007/s10529-007-9507-2

    Article  CAS  Google Scholar 

  • Kotrba P, Inui M, Yukawa H (2003) A single V317A or V317M substitution in Enzyme II of a newly identified β-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149:1569–1580. doi:10.1099/mic.0.26053-0

    Article  CAS  Google Scholar 

  • Krispin O, Allmansberger R (1998) The Bacillus subtilis galE gene is essential in the presence of glucose and galactose. J Bacteriol 180:2265–2270

    CAS  Google Scholar 

  • Kronemeyer W, Peekhaus N, Kramer R, Sahm H, Eggeling L (1995) Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. J Bacteriol 177(5):1152–1158

    CAS  Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24

    Article  CAS  Google Scholar 

  • Lee HW, Pan JG, Lebeault JM (1998) Enhanced l-lysine production in threonine-limited continuous culture of Corynebacterium glutamicum by using gluconate as a secondary carbon source with glucose. Appl Microbiol Biotechnol 49(1):9–15

    Article  CAS  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69(1):1–8. doi:10.1007/s00253-005-0155-y

    Article  CAS  Google Scholar 

  • Liebl W (1992) The genus Corynebacterium—nonmedical. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, Volume 1, 2nd edn. Springer- Verlag, New York, pp 1157–1172

    Google Scholar 

  • Liebl W (2005) Corynebacterium taxonomy. In: Eggeling L (ed) Bott M. Handbook of Corynebacterium glutamicum.CRC Press, Boca Raton, pp 9–34

    Google Scholar 

  • Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49(2):111–129. doi:10.1002/(SICI)1097-0290(19960120)49:2<111::AID-BIT1>3.0.CO;2-T

    Article  CAS  Google Scholar 

  • Marx A, Striegel K, deGraaf AA, Sahm H, Eggeling L (1997) Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol Bioeng 56(2):168180. doi:10.1002/(SICI)1097-0290(19971020)56:2<168::AID-BIT6>3.0.CO;2-N

    Article  Google Scholar 

  • Mimitsuka T, Sawai H, Hatsu MK (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71:2130–2135. doi:10.1271/bbb.60699

    Article  CAS  Google Scholar 

  • Nentwich SS (2009) Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. Microbiology 155:150–164

    Article  CAS  Google Scholar 

  • Nigam JN (2001) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J Appl Microbiol 90:208–215

    Article  CAS  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008a) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81(3):459–464. doi:10.1007/s00253-008-1668-y

    Article  CAS  Google Scholar 

  • Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008b) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78(3):449–454. doi:10.1007/s00253-007-1336-7

    Article  CAS  Google Scholar 

  • Patel M, Ou M, Ingram LO, Shanmugam KT (2004) Fermentation of sugar cane bagasse hemicellulose hydrolysate to l(+)-lactic acid by a thermotolerant acidophilic Bacillus sp. Biotechnol Lett 26(11):865–868

    Article  CAS  Google Scholar 

  • Pereira N Jr, Penuela V, de Souza MB Jr (2006) RSM Analysis of the effects of the oxygen transfer coefficient and size inoculum on Xylitol production by Candida guilliermondii. Appl Biochem Biotechnol 129:256–264

    Article  Google Scholar 

  • Rangaswamy S, Agblevor FA (2002) Screening of facultative anaerobic bacteria utilizing d-xylose for xylitol production. Appl Microbiol Biotechnol 60:88–93. doi:10.1007/s00253-002-1067-8

    Article  CAS  Google Scholar 

  • Rao RS, Prakasham RS, Prasad KK, Rajesham S, Sarma PN, Rao LV (2004) Xylitol production by Candida sp.: parameter optimization using Taguchi approach. Process Biochem 39(8):951–956. doi:10.1016/S0032-9592(03)00207-3

    Article  CAS  Google Scholar 

  • Richard P, Londesborough J, Putkonen M, Kalkkinen N, Penttila M (2001) Cloning and expression of a fungal l-arabinitol 4-dehydrogenase gene. J Biol Chem 276(44):40631–40637. doi:10.1074/jbc.M104022200

    Article  CAS  Google Scholar 

  • Rybak KV, Slivinskaya EA, Savrasova EA, Akhverdian VZ, Klyachko EV, Mashko SV, Doroshenko VG, Airikh LG, Leonova TV, Gusyatiner MM, Voroshilova EB, Kozlov YI, Hara Y, Ueda T (2011) Method for producing l-amino acids using bacteria of the Enterobacteriaceae family. United States Patent Application 20110143403. Ajinomoto Co., Inc, Tokyo

    Google Scholar 

  • Sakai S, Tsuchida Y, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73(7):2349–2353. doi:10.1128/AEM.02880-06

    Article  CAS  Google Scholar 

  • Sasaki M, Jojima T, Inui M, Yukawa H (2008) Simultaneous utilization of d-cellobiose, d-glucose, and d-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 81(4):691–699. doi:10.1007/s00253-008-1703-z

    Article  CAS  Google Scholar 

  • Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85(1):105–115. doi:10.1007/s00253-009-2065-x

    Article  CAS  Google Scholar 

  • Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86(4):1057–1066.doi: 10.1007/s00253-009-2372-2

    Google Scholar 

  • Schleif R (2000) Regulation of the l-arabinose operon of Escherichia coli. Trends Genet 16:559–565. doi:10.1016/S0168-9525(00)02153-3

    Article  CAS  Google Scholar 

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–868. doi:10.1007/s00253-010-2778-x

    Article  CAS  Google Scholar 

  • Schneider J, Niermann K, Wendisch VF (2010) Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154:191–198. doi:10.1016/j.jbiotec.2010.07.009

    Article  Google Scholar 

  • Sharkey MA, Maher MA, Guyonvarch APC (2011) Kinetic characterisation of recombinant Corynebacterium glutamicum NAD + −dependent LDH over-expressed in E. coli and its rescue of an lldD2 phenotype in C. glutamicum: the issue of reversibility re-examined. Arch Microbiol. doi: 10.1007/s00203-011-0711-z

  • Shin SJ, Cho DH, Kim YH, Cho NS (2010) Bioethanol fermentation of acid hydrolysates from yellow poplar using Pichia stipitis. Res Prog Pap Ind Biorefinery (4th ISETPP) 1–3:1344–1347

    Google Scholar 

  • Silva JPA, Mussatto SI, Roberto IC, Teixeira JA (2011) Ethanol production from xylose by Pichia stipitis NRRL Y-7124 in a stirred tank bioreactor. Braz J Chem Eng in Life Sci 28:151–156. doi:10.1590/S0104-66322011000100016

    Article  CAS  Google Scholar 

  • Smith KM, Cho KM, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87(3):1045–1055. doi:10.1007/s00253-010-2522-6

    Article  CAS  Google Scholar 

  • Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund M, Boles E, Olsson L, Spencer-Martins I, Hahn-Hagerdal B, Sauer U (2004) Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 87:90–98. doi:10.1002/bit.20094

    Article  CAS  Google Scholar 

  • Song S, Park C (1997) Organization and regulation of the d-xylose operons in E. coli K-12: Xyl R acts as a transcriptional activator. J Bacteriol 179(22):7025–7035

    CAS  Google Scholar 

  • Sonntag K, Schwinde J, deGraaf AA, Marx A, Eikmanns BJ, Wiechert W, Sahm H (1995) C-13 NMR studies of the fluxes in the central metabolism of Corynebacterium glutamicum during growth and overproduction of amino acids in batch cultures. Appl Microbiol Biotechnol 44:489–495

    Article  CAS  Google Scholar 

  • Sprenger GA (1995) Genetics of pentose–phosphate pathway enzymes of Escherichia coli K-12. Arch Microbiol 164(5):324–330. doi:10.1007/BF02529978

    Article  CAS  Google Scholar 

  • Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928. doi:10.1128/aem.71.10.5920-5928.2005

    Article  CAS  Google Scholar 

  • Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U (2007) Genetic Analysis of a novel pathway for d-xylose metabolism in Caulobacter crescentus. J Bacteriol 189:2181–2185. doi:10.1128/JB.01438-06

    Article  CAS  Google Scholar 

  • Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K (2007) Systems biology for industrial strains and fermentation processes — example: amino acids. J Biotechnol 129(2):181–190. doi:10.1016/j.jbiotec.2007.01.031

    Article  CAS  Google Scholar 

  • Terasawa M, Yukawa H (1993) Industrial production of biochemicals by native immobilization. In: Tanaka A, Tosa T, Kobayashi T (eds) Industrial application of immobilized biocatalysts. Marcel Dekker, New York, pp 37–52

    Google Scholar 

  • Van Arsdell SW, Perkins JB, Yocum RR, Luan L, Howitt CL, Chatterjee NP, Pero JG (2005) Removing a bottleneck in the Bacillus subtilis biotin pathway: BioA utilizes lysine rather than S-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction. Biotechnol Bioeng 91(1):75–83. doi:10.1002/bit.20488

    Article  Google Scholar 

  • Wendisch VF (2006) Genetic regulation of Corynebacterium glutamicum metabolism. J Microbiol Biotechnol 16(7):999–1009

    CAS  Google Scholar 

  • Wendisch VF (2007). Amino acid biosynthesis—pathways, regulation and metabolic engineering. In: A. Steinbuchel (Ed.) Microbiology Monograph.

  • Wendisch VF, de Graaf AA, Sahm H, Eikmanns BJ (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182(11):3088–3096

    Article  CAS  Google Scholar 

  • Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A (2004) Top value added chemicals from biomass, volume 1: Results of screening for potential candidates from sugars and synthesis gas. In Werpy T, Petersen G (eds) Biomass. US Department of Energy

  • Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24:189–226

    Article  Google Scholar 

  • Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertes AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiol 153(4):1042–1058. doi:10.1099/mic.0.2006/003657-0

    Article  CAS  Google Scholar 

  • Zhang X, Jantama K, Moore JC, Shanmugam KT, Ingram LO (2007) Production of l-lanine by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:355–366. doi:10.1007/s00253-007-1170-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our sincere thanks to the Department of Biotechnology (DBT), New Delhi and BMBF, Germany, for the Indo-German bilateral collaborative programme and also to Colgate Palmolive (USA) for financial support allowing us to work on amino acids. Special thanks to Prof. Volker Wendisch, Bielefeld University, Germany, with whom we collaborated on the topic. We deeply acknowledge the efforts put forward by the reviewers for improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Madhavan Nampoothiri.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00253-011-3789-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopinath, V., Murali, A., Dhar, K.S. et al. Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products. Appl Microbiol Biotechnol 93, 95–106 (2012). https://doi.org/10.1007/s00253-011-3686-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3686-4

Keywords

Navigation