Skip to main content

Advertisement

Log in

Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Damping-off disease is caused by Rhizoctonia solani and leads to serious loss in many crops. Biological control is an efficient and environmentally friendly way to prevent damping-off disease. Optical micrographs, scanning electron micrographs, and the determination of hydrolytic enzymes were used to investigate the antagonism of Trichoderma harzianum SQR-T37 (SQR-T37) against R. solani. Experiments were performed in pots to assess the in vivo disease-control efficiency of SQR-T37 and bio-organic fertilizer. The results indicate that the mycoparasitism was the main mechanism accounting for the antagonistic activity of SQR-T37. In one experiment, the population of R. solani was decreased from 106 internal transcribed spacer (ITS) copies per gram soil to 104 ITS copies per gram soil by the presence of the antagonist. In this experiment, 45% of the control efficiency was obtained when 8 g of SQR-T37 hyphae per gram soil was applied. In a second experiment, as much as 81.82% of the control efficiency was obtained when bio-organic fertilizer (SQR-T37 fermented organic fertilizer, BIO) was applied compared to only 27.27% of the control efficiency when only 4 g of SQR-T37 hyphae per gram soil was applied. Twenty days after incubation, the population of T. harzianum was 4.12 × 107 ITS copies per gram soil in the BIO treatment, which was much higher than that in the previous treatment (8.77 × 105 ITS copies per gram soil), where only SQR-T37 was applied. The results indicated that SQR-T37 was a potent antagonist against R. solani in a mycoparasitic way that decreased the population of the pathogen. Applying BIO was more efficient than SQR-T37 application alone because it stabilized the population of the antagonist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adesina MF, Lembke A, Costa R, Speksnijder A, Smalla K (2007) Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: site-dependent composition and diversity revealed. Soil Biol Biochem 39:2818–2828

    Article  CAS  Google Scholar 

  • Almeida FBdR, Cerqueira FM, Silva RdN, Ulhoa CJ, Lima AL (2007) Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnol Lett 29:1189–1193

    Article  CAS  Google Scholar 

  • Anderson NA (1982) The genetics and pathology of Rhizoctonia solani. Annu Rev Phytopathol 20:329–374

    Article  Google Scholar 

  • Baker KF (1970) Types of Rhizoctonia diseases and their occurrence. In: Parmeter JR Jr (ed) Rhizoctonia solani, biology and pathology. University of California Press, California, pp 125–148

    Google Scholar 

  • Benhamou N, Chet I (1993) Hyphal interactions between Trichoderma harzianum and Rhizoctonia solani: ultrastructure and gold cytochemistry of mycoparasitic process. Phytopathology 83:1062–1071

    Article  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  Google Scholar 

  • Boulter JI, Trevors JT, Boland GJ (2002) Microbial studies of compost: bacterial identification, and their potential for turfgrass pathogen suppression. World J Microb Biot 18:661–671

    Article  CAS  Google Scholar 

  • Brussaard L, Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agr Ecosyst Environ 121:233–244

    Article  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  Google Scholar 

  • Chen LH, Yang XM, Raza W, Li JH, Liu YX, Qiu MH, Zhang FG, Shen QR (2010) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl Microbiol Biot. doi:10.1007/s00253-010-2948-x

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microb 71:4951–4959

    Article  CAS  Google Scholar 

  • Das M, Royer TV, Leff LG (2007) Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Appl Environ Microb 73:756–767

    Article  CAS  Google Scholar 

  • Dineen SM, Aranda R IV, Anders DL, Robertson JM (2011) An evaluation of commercial DNA extraction kits for the isolation of bacterial spore DNA from soil. J Appl Microbiol. doi:10.1111/j.1365-2672.2010.04816.x

    Google Scholar 

  • Dong XL, Reddy GB (2010) Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique. Bioresource Technol 101:1175–1182

    Article  CAS  Google Scholar 

  • Elad Y, Chet I, Henis Y (1982) Degradacion of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol 28:719–725

    Article  CAS  Google Scholar 

  • El-Hassan SA, Gowen SR (2006) Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. J Phytopathol 154:148–155

    Article  Google Scholar 

  • El-Katatny MH, Somitsch W, Robra KH, El-Katatny MS, Gübitz GM (2000) Production of chitinase and β-1,3-glucanase by Trichoderma harzianum for control of the phytopathogenic fungus Sclerotium rolfsii. Food Technol Biotech 38:173–180

    Google Scholar 

  • Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Meth 56:297–314

    Article  CAS  Google Scholar 

  • Fisher SG, Lerman LS (1983) DNA fragments differing by single base pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA 80:1579–1583

    Article  Google Scholar 

  • Freeman WM, Walker SJ, Vrana KE (1999) Quantitative RT-PCR: pitfalls and potential. Biotechniques 26:112–125

    CAS  Google Scholar 

  • Garbeva P, Postma J, Veen JA, Elsas JD (2006) Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environ Microbiol 8:233–246

    Article  CAS  Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  CAS  Google Scholar 

  • Grosch R, Faltin F, Lottmann J, Kofoet A, Berg G (2005) Effectiveness of three antagonistic bacterial isolates to suppress Rhizoctonia solani Kühn on lettuce and potato. Can J Microbiol 51:345–353

    Article  CAS  Google Scholar 

  • Hadar Y, Chet I, Henis Y (1979) Biological control of Rhizoctonia solani damping-off with wheat bran culture of Trichoderma harzianum. Phytopathology 69:64–68

    Article  CAS  Google Scholar 

  • Han Y, Yang BJ, Zhang FL, Miao XL, Li ZY (2009) Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with south China sea sponge Craniella australiensis. Mar Biotechnol 1:132–140

    Article  Google Scholar 

  • Hervás A, Landa B, Datnoff LE (1998) Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpea. Bio Control 13:166–176

    Article  Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathology 37:427–446

    Article  CAS  Google Scholar 

  • Hu P, Zhou GH, Xu XL, Li CB, Han YQ (2009) Characterization of the predominant spoilage bacteria in sliced vacuum-packed cooked ham based on 16 S rDNA-DGGE. Food Control 20:99–104

    Article  CAS  Google Scholar 

  • Jagnow G (1987) Inoculation of cereal crops and forage grasses with nitrogen-fixing rhizosphere bacteria: possible causes of success and failure with regard to yield response-a review. Z Pflanzenernahr Bodenkd 150:361–368

    Article  Google Scholar 

  • Jagnow G, Höflich G, Hoffmann KH (1991) Inoculation of non-symbiotic rhizosphere bacteria-possibilities of increasing and stabilizing yields. Angew Bot 65:97–126

    Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  CAS  Google Scholar 

  • Kay SL, Stewart A (1994) Evaluation of fungal antagonists for control of white rot in soil box trials. Plant Pathol 43:371–377

    Article  Google Scholar 

  • Kuter GA, Nelson EB, Hoitink HAJ, Madden LV (1983) Fungal populations in container media amended with composted hardwood bark suppressive and conducive to Rhizoctonia damping-off. Phytopathology 73:1450–1456

    Article  Google Scholar 

  • Lee YG, Chung KC, Wi SG, Lee JC, Bae HJ (2009) Purification and properties of a chitinase from Penicillium sp. LYG 0704. Protein Expres Purif 65:244–250

    Article  CAS  Google Scholar 

  • Leisova L, Minarikova V, Kucera L, Ovesna J (2006) Quantification of Pyrenophora teres in infected barley leaves using real-time PCR. J Microbiol Meth 67:446–455

    Article  CAS  Google Scholar 

  • Lewis JA, Lumsden RD (2001) Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Prot 20:49–56

    Article  Google Scholar 

  • Li SD (1995) Quantitative assay of Rhizoctonia solani Kühn AG-1 in soil. Soil Biol Biochem 27:251–256

    Article  CAS  Google Scholar 

  • Li XY, Zhang HW, Wu MN, Zhang Y, Zhang CG (2008) Effect of methamidophos on soil fungi community in microcosms by plate count, DGGE and clone library analysis. J Environ Sci 20:619–625

    Article  CAS  Google Scholar 

  • Lievens B, Brouwer M, Vanachter ACRC, Cammue BPA, Thomma BPHJ (2006) Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci 171:155–165

    Article  CAS  Google Scholar 

  • Ling N, Xue C, Huang QW, Yang XM, Xu YC, Shen QR (2010) Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. Biocontrol 55:673–683

    Article  Google Scholar 

  • Litterick A, Harrier L, Wallace P, Watson C, Wood M (2004) The role of uncomposted materials, composts, manures and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production-a review. Crit Rev Plant Sci 23:453–479

    Article  Google Scholar 

  • López-Mondéjar R, Antón A, Raidl S, Ros M, Pascual JA (2010) Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass. Bioresource Technol 101:2888–2891

    Article  Google Scholar 

  • López-Mondéjar R, Ros M, Pascual JA (2011) Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biol Control 56:59–66

    Article  Google Scholar 

  • Lucas GB (1975) Diseases of tobacco, 3rd edn. Biological Consulting Associates, North California

    Google Scholar 

  • Luo J, Ran W, Hu J, Yang XM, Xu YC, Shen QR (2010) Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Sci Soc Am J 74:2039–2048

    Article  CAS  Google Scholar 

  • Mackay IM, Arden KE, Nitsche A (2002) Real time PCR in virology. Nucleic Acids Res 30:1292–1305

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53

    Article  CAS  Google Scholar 

  • Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martínez P, García JM, Olmedo-Monfil V, Cortés C, Kenerley C, Herrera-Estrella A (2003) Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci USA 100:15965–15970

    Article  CAS  Google Scholar 

  • Minuto A, Spadaro D, Garibaldi A, Gullino LM (2006) Control of soil borne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot 15:735–742

    Google Scholar 

  • Nelson EB (1998) Biological control of Pythium seed rot and preemergence damping-off of cotton with Enterobacter cloacae and Ervinis herbicola applied as seed treatments. Plant Dis 72:140–142

    Article  Google Scholar 

  • Niemi RM, Heiskanen I, Wallenius K, Lindström K (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol Meth 45:155–165

    Article  Google Scholar 

  • Noronha EF, Ulhoa CJ (2000) Characterization of a 29-KDa β-1,3-glucanase from Trichoderma harzianum. FEMS Microbiol Lett 183:119–123

    CAS  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Postma J, Montanari M, van den Boogert PHJF (2003) Microbial enrichment to enhance the disease suppressive activity of compost. Eur J Soil Biol 39:157–163

    Article  Google Scholar 

  • Ramos B, García JAL, Probanza A, Barrientos ML, Mañero FJG (2003) Alterations in the rhizobacterial community associated with European alder growth when inoculated with PGPR strain Bacillus licheniformis. Environ Exp Bot 49:61–68

    Article  Google Scholar 

  • Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133

    Article  CAS  Google Scholar 

  • Ruiz-Ruiz S, Moreno P, Guerri J, Ambrós S (2007) A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. J Virol Methods 145:96–105

    Article  CAS  Google Scholar 

  • Rutledge RG, Côté C (2003) Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31:93

    Article  Google Scholar 

  • Scheuerell SJ, Sullivan DM, Mahafee WF (2005) Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in contained media amended with a diverse range of Pacific Northwest compost sources. Phytopathology 95:306–315

    Article  Google Scholar 

  • Scott IU, Cruz-Villegas V, Flynn HW, Miller D (2004) Delayed-onset, bleb-associated endophthalmitis caused by Lecythophora mutabilis. Am J Ophthalmol 137:583–585

    Article  Google Scholar 

  • Sharma R, Ranjan R, Kapardar RK, Grover A (2005) ‘Unculturable” bacterial diversity: an untapped resource. Curr Sci 89:72–77

    CAS  Google Scholar 

  • Simcox KD, Bennetzen JL (1993) The use of molecular markers to study Setosphaeria turcica resistance in maize. Phytopathology 83:1326–1330

    Article  CAS  Google Scholar 

  • Sneh B, Jabaji-Hare S, Neate S, Dijst G (1996) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology, and disease control, 5th edn. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Trillas MI, Casanova E, Cotxarrera L, Ordovas J, Borrero C, Aviles M (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39:32–38

    Article  Google Scholar 

  • Tuitert G, Szczech M, Bollen GJ (1998) Suppression of Rhizoctonia solani in potting mixtures amended with compost made from organic household waste. Phytopathology 88:764–773

    Article  CAS  Google Scholar 

  • Uyanoz R (2007) The effects of different bio-organic, chemical fertilizers and their combination on yield, macro and micro nutrition content of dry bean (Phaseolus vulgaris L.). Int J Agr Res 2:115–125

    Google Scholar 

  • Van Veen JA, Van Overbeek LS, Van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol R 61:121–135

    Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Wu HS, Yang XN, Fan JQ, Miao WG, Ling N, Xu YC, Huang QW, Shen QR (2009) Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. Biocontrol 54:287–300

    Article  Google Scholar 

  • Zhang SS, Raza W, Yang XM, Hu J, Huang QW, Xu YC, Liu XH, Ran W, Shen QR (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bio-organic fertilizer. Biol Fert Soils 44:1073–1080

    Article  Google Scholar 

  • Zhao QY, Dong CX, Yang XM, Mei XL, Ran W, Shen QR, Xu YC (2011) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Appl Soil Ecol 47:67–75

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Chinese Ministry of Science and Technology (2007CB109304 and 2009120) and by the Science and Technology Bureau of Jiangsu Province (BE2009672 and BA2008027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingming Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Chen, L., Ran, W. et al. Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Appl Microbiol Biotechnol 91, 741–755 (2011). https://doi.org/10.1007/s00253-011-3259-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3259-6

Keywords

Navigation