Skip to main content
Log in

The α-glucuronidase Agu1 from Schizophyllum commune is a member of a novel glycoside hydrolase family (GH115)

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Schizophyllum commune produces an α-glucuronidase that is active on polymeric xylan, while the ascomycete α-glucuronidases are only active on xylan oligomers. In this study, we have identified the gene (agu1) encoding this enzyme and confirmed the functionality by overexpression of the gene in S. commune and degradation of aldopentauronic acids, (MeGlcA)3-Xyl4, in the cultivation medium of the transformants. Expression analysis demonstrated that agu1 is not co-regulated with the predominant xylanase-encoding gene (xynA) of S. commune. The detailed sequence analysis of Agu1 demonstrated that this gene belongs to a novel glycoside hydrolase family (GH115) that also contains candidate genes from ascomycete fungi and bacteria. Phylogenetic analysis showed that the fungal GH115 α-glucuronidases are distinctly separate from the prokaryotic clade and distributed over three branches. The identification of putative genes encoding this enzyme in industrial fungi, such as Aspergillus oryzae and Hypocrea jecorina, will provide a starting point for further analysis of the importance of this enzyme for the hydrolysis of plant biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aspinall GO (1980) Chemistry of cell wall polysaccharides. Biochem Plants 3:473–500

    CAS  Google Scholar 

  • Biely P, MacKenzie CR, Schneider H (1988) Production of acetyl xylan esterase by Trichoderma reesei and Schizophyllum commune. Can J Microbiol 34:767–772

    Article  CAS  Google Scholar 

  • Biely P, de Vries RP, Vrsanska M, Visser J (2000) Inverting character of α-glucuronidase A from Aspergillus tubingensis. Biochim Biophys Acta, Gen Subj 1474:360–364

    Article  CAS  Google Scholar 

  • Choi I, Kim H, Choi Y (2000) Gene cloning and characterization of α-glucuronidase of Bacillus stearothermophilus No. 236. Biosci Biotechnol Biochem 64:2530–2537

    Article  CAS  Google Scholar 

  • de Vries RP, Poulsen CH, Madrid S, Visser J (1998) aguA, the gene encoding an extracellular α-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. J Bacteriol 180:243–249

    Article  Google Scholar 

  • de Vries RP, Visser J, de Graaff LH (1999) CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res Microbiol 150:281–285

    Article  Google Scholar 

  • de Vries RP, van de Vondervoort PJI, Hendriks L, van de Belt M, Visser J (2002) Regulation of the α-glucuronidase-encoding gene (aguA) from Aspergillus niger. Mol Genet Genomics 268:96–102

    Article  Google Scholar 

  • Dons JJM, de Vries OMH, Wessels JGH (1979) Characterization of the genome of the basidiomycete Schizophyllum commune. Biochim Biophys Acta Nucleic Acids Protein Synth 563:100–112

    Article  CAS  Google Scholar 

  • Dudkin MS, Shkantova NG, Parfent'eva MA (1974) Structure of arabinoglucuronoxylan of Poa pratensis. Khim Prir Soedin 10:723–724

    Google Scholar 

  • Ebringerová A, Heinze T (2000) Xylan and xylan derivatives—biopolymers with valuable properties. 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  • Fauré R, Courtin CM, Delcour JA, Dumon C, Faulds CB, Fincher GB, Fort S, Fry SC, Halila S, Kabel MA, Pouvreau L, Quemener B, Rivet A, Saulnier L, Schols HA, Driquez H, O'Donohue MJ (2009) A brief and informationally rich naming system for oligosaccharide motifs of heteroxylans found in plant cell walls. Aust J Chem 62:1–5

    Article  Google Scholar 

  • Halgasova N, Kutejova E, Timko J (1994) Purification and some characteristics of the acetylxylan esterase from Schizophyllum commune. Biochem J 298:751–755

    Article  CAS  Google Scholar 

  • Haltrich D, Steiner W (1994) Formation of xylanase by Schizophyllum commune: effect of medium components. Enzyme Microb Technol 16:229–235

    Article  CAS  Google Scholar 

  • Heneghan MN, McLoughlin L, Murray PG, Tuohy MG (2007) Cloning, characterization and expression analysis of α-glucuronidase from the thermophilic fungus Talaromyces emersonii. Enzyme Microb Technol 41:677–682

    Article  CAS  Google Scholar 

  • Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8:460

    Article  Google Scholar 

  • Kolenová K, Vršanská M, Biely P (2005) Purification and characterization of two minor endo-β-1, 4-xylanases of Schizophyllum commune. Enzyme Microb Technol 36:903–910

    Article  Google Scholar 

  • Kolenová K, Vršanská M, Biely P (2006) Mode of action of endo-β-1, 4-xylanases of families 10 and 11 on acidic xylooligosaccharides. J Biotechnol 121:338–345

    Article  Google Scholar 

  • Kolenová K, Ryabova O, Vrsanska M, Biely P (2010) Inverting character of family GH115 α-glucuronidases. FEBS Lett 584:4063–4068

    Article  Google Scholar 

  • Lugones LG, Scholtmeijer K, Klootwijk R, Wessels JG (1999) Introns are necessary for mRNA accumulation in Schizophyllum commune. Mol Microbiol 32:681–689

    Article  CAS  Google Scholar 

  • MacKenzie CR, Bilous D (1988) Ferulic acid esterase activity from Schizophyllum commune. Appl Environ Microbiol 54:1170–1173

    Article  CAS  Google Scholar 

  • Niederpruem DJ, Hobbs H, Henry L (1964) Nutritional studies of development in Schizophyllum commune. J Bacteriol 88:1721–1729

    Article  CAS  Google Scholar 

  • O'Connell KL, Stults JT (1997) Identification of mouse liver proteins on two-dimensional electrophoresis gels by matrix-assisted laser desorption/ionization mass spectrometry of in situ enzymic digests. Electrophoresis 18:349–359

    Article  CAS  Google Scholar 

  • Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kües U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FWMR, van Kuyk PA, Horton JS, Grigoriev IV, Wösten HAB (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28:957–963

    Article  CAS  Google Scholar 

  • Ruile P, Winterhalter C, Liebl W (1997) Isolation and analysis of a gene encoding α-glucuronidase, an enzyme with a novel primary structure involved in the breakdown of xylan. Mol Microbiol 23:267–279

    Article  CAS  Google Scholar 

  • Ryabova O, Vrsanska M, Kaneko S, van Zyl WH, Biely P (2009) A novel family of hemicellulolytic α-glucuronidase. FEBS Lett 583:1457–1462

    Article  CAS  Google Scholar 

  • Sambrook JF, Russell DW (2000) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Schuren FH, Wessels JG (1994) Highly-efficient transformation of the homobasidiomycete Schizophyllum commune to phleomycin resistance. Curr Genet 26:179–183

    Article  CAS  Google Scholar 

  • Shao W, Obi SKC, Puls J, Wiegel J (1995) Purification and characterization of the α-glucuronidase from Thermoanaerobacterium sp. strain JW/SL-YS485, an important enzyme for the utilization of substituted xylans. Appl Environ Microbiol 61:1077–1081

    Article  CAS  Google Scholar 

  • Siika-aho M, Tenkanen M, Buchert J, Puls J, Viikari L (1994) An α-glucuronidase from Trichoderma reesei Rut C-30. Enzyme Microb Technol 16:813–819

    Article  CAS  Google Scholar 

  • Teleman A, Lundqvist J, Tjerneld F, Stålbrand H, Dahlman O (2000) Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr Res 329:807–815

    Article  CAS  Google Scholar 

  • Tenkanen M, Siika-aho M (2000) An α-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 78:149–161

    Article  CAS  Google Scholar 

  • Tenkanen M, Luonteri E, Teleman A (1996) Effect of side groups on the action of β-xylosidase from Trichoderma reesei against substituted xylo-oligosaccharides. FEBS Lett 399:303–306

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Article  CAS  Google Scholar 

  • Uchida H, Nanri T, Kawabata Y, Kusakabe I, Murakami K (1992) Purification and characterization of intracellular α-glucuronidase from Aspergillus niger 5-16. Biosci Biotechnol Biochem 56:1608–1615

    Article  CAS  Google Scholar 

  • van Peij NNME, Gielkens MMC, de Vries RP, Visser J, de Graaff LH (1998) The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64:3615–3619

    Article  Google Scholar 

  • Verbruggen MA, Beldman G, Voragen AG (1998) Enzymic degradation of sorghum glucuronoarabinoxylans leading to tentative structures. Carbohydr Res 306:275–282

    Article  CAS  Google Scholar 

  • Yoshida S, Kusakabe I, Matsuo N, Shimizu K, Yasui T, Murakami K (1990) Structure of rice-straw arabinoglucuronoxylan and specificity of Streptomyces xylanase toward the xylan. Agric Biol Chem 54:449–457

    CAS  PubMed  Google Scholar 

  • Zhang Y, Frohman MA (1997) Using rapid amplification of cDNA ends (RACE) to obtain full-length cDNAs. Methods Mol Biol 69:61–87

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. Han Wösten for access to the S. commune genome sequence, Prof. Annele Hatakka (Department of Food and Environmental Sciences, University of Helsinki) for providing the S. commune growing facilities, Dr. Kristiina Mäkinen (Department of Food and Environmental Sciences, University of Helsinki) for providing the agu1 cDNA isolation facilities, Dr. Matti Siika-aho (VTT Technical Research Centre) and Dr. Sanna Koutaniemi (Department of Food and Environmental Sciences, University of Helsinki) for the purification of S. commune α-glucuronidase (for raising antibody for Western blotting), Dr. Luis G. Lugones (Microbiology, University of Utrecht) for useful suggestions for the growing of S. commune, and Dr. Karin Scholtmeijer (Microbiology, University of Utrecht) for the expression vector. The financial support from the Academy of Finland through the WoodWisdom-Net Programme (HemiPop project no. 1124281), Glycoscience Graduate School (S.-L. C.), and COST 928 and COST FP0602 Short Term Scientific Mission (STSM) are gratefully acknowledged. E. B. and R. P. V. were supported by the Dutch Technology Foundation STW, the applied science division of NWO, and the Technology Program of the Ministry of Economic Affairs (project no. 07063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sun-Li Chong or Ronald P. de Vries.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Nucleotide and translated amino acid sequences of S. commune agu1. Exons are shown in upper case letters and introns are shown in lower case letters. The signal peptide is highlighted and the N-glycosylation sites are underlined accordingly (DOC 36 kb)

Supplemental Fig. 2

Alignment of Agu1, the N-terminal amino acid sequence of the purified α-glucuronidase from S. commune (Tenkanen and Siika-aho 2000), and the second GH115 member identified in the S. commune genome. Identical amino acids between the N-terminal sequence of the purified enzyme and Agu1 are underlined. Identical amino acids between Agu1 and the second GH115 member are indicated by stars. This alignment demonstrates that Agu1 encodes the purified enzyme and that the two GH115 members differ significantly from each other throughout the amino acid sequence (DOC 32 kb)

Supplemental Fig. 3

Bootstrap-supported phylogenetic analysis of family GH115, showing all of the fungal proteins formed a group and separated from bacterial proteins. The characterized enzymes from P. stipitis (Scheffersomyces stipitis CBS 6054; Ryabova et al. 2009) and S. commune (this study) are indicated in bold type. Bootstrap values for the respective branches are shown (DOC 198 kb)

Supplemental Table 1

Genes used in the alignment (XLS 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chong, SL., Battaglia, E., Coutinho, P.M. et al. The α-glucuronidase Agu1 from Schizophyllum commune is a member of a novel glycoside hydrolase family (GH115). Appl Microbiol Biotechnol 90, 1323–1332 (2011). https://doi.org/10.1007/s00253-011-3157-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3157-y

Keywords

Navigation