Skip to main content
Log in

A celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradation

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In our previous study using a fluorescently labeled cohesin biomarker, we detected and identified a putative cellulosomal mannanase belonging to the glycosyl hydrolase family 26 from Clostridium cellulovorans in xylan-containing cultures. In this study, a mannanase gene, manB from C. cellulovorans, was expressed in Escherichia coli. The optimal pH of a purified enzyme was around pH 7.0 and the optimal temperature was 40°C. The purified mannanase B (ManB) showed high hydrolytic activity toward galactomannan. An assembly of ManB with mini-CbpA, which contains a carbohydrate-binding module that provides proximity to insoluble substrates, increased the activity toward galactomannan [locust bean gum (LBG) and guar gum] 1.7- and 2.0-fold over those without mini-CbpA. We tested the synergistic effects on galactomannan (LBG and guar gum) degradation using cellulosomal mannanase ManB with cellulosomal endoglucanase E, which was predicted to have mannanase activity in C. cellulovorans as a cellulolytic complex. When assembled with the mini-CbpA, the mixture of endoglucanase E (EngE) and ManB at a molar ratio of 1:2 showed the highest synergistic effect (2.4-fold) on LBG. The mixture at a ratio of 1:3 showed the highest synergistic effect (2.8-fold) on guar gum. These synergistic actions indicated that ManB assembled with mini-CbpA hydrolyzed insoluble galactomannan, which in turn promoted soluble galactomannan degradation by EngE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Article  Google Scholar 

  • Cho W, Jeon SD, Shim HJ, Doi RH, Han SO (2010) Cellulosomic profiling produced by Clostridium cellulovorans during growth on different carbon sources explored by the cohesin marker. J Biotechnol 145:233–239

    Article  CAS  Google Scholar 

  • Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  CAS  Google Scholar 

  • Fontes CM, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681

    Article  CAS  Google Scholar 

  • Franco PF, Ferreira HM, Filho EX (2004) Production and characterization of hemicellulase activities from Trichoderma harzianum strain T4. Biotechnol Appl Biochem 40:255–259

    Article  CAS  Google Scholar 

  • Giallo J, Gaudin C, Belaich JP (1985) Metabolism and solubilization of cellulose by Clostridium cellulolyticum H10. Appl Environ Microbiol 49(5):1216–1221

    CAS  Google Scholar 

  • Han SO, Yukawa H, Inui M, Doi RH (2003a) Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans. J Bacteriol 185:6067–6075

    Article  CAS  Google Scholar 

  • Han SO, Yukawa H, Inui M, Doi RH (2003b) Transcription of Clostridium cellulovorans cellulosomal cellulase and hemicellulase genes. J Bacteriol 185:2520–2527

    Article  CAS  Google Scholar 

  • Han SO, Yukawa H, Inui M, Doi RH (2005) Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans. Microbiology 151:1491–1497

    Article  CAS  Google Scholar 

  • Hilden L, Johansson G (2004) Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett 26:1683–1693

    Article  CAS  Google Scholar 

  • Jeon E, Hyeon JE, Suh DJ, Suh YW, Kim SW, Song KH, Han SO (2009) Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes. Mol Cells 28:369–373

    Article  CAS  Google Scholar 

  • Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828–836

    CAS  Google Scholar 

  • Miller GL, Blum R, Glennon WE, Burton AL (1960) Measurement of carboxymethyl cellulase activity. Anal Biochem 1(2):127–132

    Article  CAS  Google Scholar 

  • Miras I, Schaeffer F, Beguin P, Alzari PM (2002) Mapping by site-directed mutagenesis of the region responsible for cohesin-dockerin interaction on the surface of the seventh cohesin domain of Clostridium thermocellum CipA. Biochemistry 41:2115–2119

    Article  CAS  Google Scholar 

  • Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  CAS  Google Scholar 

  • Murashima K, Chen CL, Kosugi A, Tamaru Y, Doi RH, Wong SL (2002a) Heterologous production of Clostridium cellulovorans engB, using protease-deficient Bacillus subtilis, and preparation of active recombinant cellulosomes. J Bacteriol 184:76–81

    Article  CAS  Google Scholar 

  • Murashima K, Kosugi A, Doi RH (2002b) Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans. J Bacteriol 184:5088–5095

    Article  CAS  Google Scholar 

  • Murashima K, Kosugi A, Doi RH (2003) Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation. J Bacteriol 185:1518–1524

    Article  CAS  Google Scholar 

  • Park JS, Matano Y, Doi RH (2001) Cohesin-dockerin interactions of cellulosomal subunits of Clostridium cellulovorans. J Bacteriol 183:5431–5435

    Article  CAS  Google Scholar 

  • Pham TA, Berrin JG, Record E, To KA, Sigoillot JC (2010) Hydrolysis of softwood by Aspergillus mannanase: role of a carbohydrate-binding module. J Biotechnol 148:163–170

    Article  CAS  Google Scholar 

  • Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, Samatova NF, Mielenz JR (2009) Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE 4:e5271

    Article  Google Scholar 

  • Rincon MT, Ding SY, McCrae SI, Martin JC, Aurilia V, Lamed R, Shoham Y, Bayer EA, Flint HJ (2003) Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. J Bacteriol 185:703–713

    Article  CAS  Google Scholar 

  • Schaeffer F, Matuschek M, Guglielmi G, Miras I, Alzari PM, Beguin P (2002) Duplicated dockerin subdomains of Clostridium thermocellum endoglucanase CelD bind to a cohesin domain of the scaffolding protein CipA with distinct thermodynamic parameters and a negative cooperativity. Biochemistry 41:2106–2114

    Article  CAS  Google Scholar 

  • Sleat R, Mah RA, Robinson R (1984) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Appl Environ Microbiol 48:88–93

    CAS  Google Scholar 

  • Tamaru Y, Doi RH (1999) Three surface layer homology domains at the N terminus of the Clostridium cellulovorans major cellulosomal subunit EngE. J Bacteriol 181:3270–3276

    CAS  Google Scholar 

  • Tamaru Y, Doi RH (2000) The engL gene cluster of Clostridium cellulovorans contains a gene for cellulosomal manA. J Bacteriol 182:244–247

    Article  CAS  Google Scholar 

  • Vlasenko E, Schulein M, Cherry J, Xu F (2009) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol 101:2405–2411

    Article  Google Scholar 

  • Ximenes EA, Chen H, Kataeva IA, Cotta MA, Felix CR, Ljungdahl LG, Li XL (2005) A mannanase, ManA, of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules. Can J Microbiol 51:559–568

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Ka Young Shin for skilled technical assistance. This work was supported in part by a grant from the BioGreen 21 Program, Rural Development Administration (Code #20080401034002) and the Technology Development Program for Agriculture and Forestry, Ministry for Agriculture, Forestry and Fisheries, Republic of Korea (no. 309016-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ok Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, S.D., Yu, K.O., Kim, S.W. et al. A celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradation. Appl Microbiol Biotechnol 90, 565–572 (2011). https://doi.org/10.1007/s00253-011-3108-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3108-7

Keywords

Navigation