Skip to main content
Log in

A novel conico-cylindrical flask aids easy identification of critical process parameters for cultivation of marine bacteria

  • Methods and Protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A polymethylmethacrylate (PMMA) conico-cylindrical flask (CCF) with an inner arrangement consisting of eight equidistantly spaced rectangular strips mounted radially on a circular disk to provide additional surface area for microbial attachment and ports to allow air supply was employed for melanin production by Shewanella colwelliana and antibiotic production by Pseudoalteromonas rubra. The design allowed comparison of production between (1) CCF with hydrophobic surface (PMMA-CCF), (2) CCF with hydrophilic glass surface (GS-CCF), and (3) standard unbaffled Erlenmeyer flask (EF). Melanin production in the PMMA-CCF was higher by at most 33.5% and growth of S. colwelliana by at most 309.2% compared to the other vessels. Melanin synthesis was positively correlated with reactor surface area and hydrophobicity, suspended cell growth, and biofilm formation. Antibiotic production in the EF was higher by at most 83.3%, but growth of P. rubra was higher in the PMMA-CCF by at most 54.5% compared to the other vessels. A hydrophilic vessel surface, abundant air supply, but low shear stress enhanced antibiotic production. The CCF together with the EF allowed identification of the crucial parameters (vessel surface characteristics, growth, biofilm formation, and aeration) influencing productivity, knowledge of which in the initial stages of process development will facilitate informed decisions at the later phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahimou F, Semmens MJ, Haugstad G, Novak PJ (2007) Effect of protein, polysaccharide, and oxygen concentration profiles on biofilm cohesiveness. Appl Environ Microbiol 73:2905–2910

    Article  CAS  Google Scholar 

  • Andersson S, Dalhammar G, Land CJ, Kuttuva Rajarao G (2009) Characterization of extracellular polymeric substances from denitrifying organism Comamonas denitrificans. Appl Microbiol Biotechnol 82:535–543

    Article  CAS  Google Scholar 

  • Baker MG, Lalonde SV, Konhauser KO, Foght JM (2010) Role of extracellular polymeric substances in the surface chemical reactivity of Hymenobacter aerophilus, a psychrotolerant bacterium. Appl Environ Microbiol 76:102–109

    Article  CAS  Google Scholar 

  • Betts JI, Baganz F (2006) Miniature bioreactors: current practices and future opportunities. Microb Cell Fact 5, art. no. 21

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fuqua WC, Weiner RM (1993) The melA gene is essential for melanin biosynthesis in the marine bacterium Shewanella colwelliana. J Gen Microbiol 139:1105–1114

    CAS  Google Scholar 

  • Gauthier MJ (1976a) Alteromonas rubra sp. nov., a new marine antibiotic producing bacterium. Int J Syst Bacteriol 26:459–466

    Article  Google Scholar 

  • Gauthier MJ (1976b) Modification of bacterial respiration by a macromolecular polyanionic antibiotic produced by a marine Alteromonas. Antimicrob Agents Chemother 9:361–366

    CAS  Google Scholar 

  • Holmström C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293

    Google Scholar 

  • Humphrey A (1998) Shake flask to fermentor: what have we learned? Biotechnol Prog 14:3–7

    Article  CAS  Google Scholar 

  • Ivanova EP, Nicolau DV, Yumoto N, Taguchi T, Okamoto K, Tatsu Y, Yoshikawa S (1998) Impact of conditions of cultivation and adsorption on antimicrobial activity of marine bacteria. Mar Biol 130:545–551

    Article  Google Scholar 

  • Lang S, Hüners M, Lurtz V (2005) Bioprocess engineering data on the cultivation of marine prokaryotes and fungi. Adv Biochem Eng Biotechnol 97:29–62

    CAS  Google Scholar 

  • Marwick JD, Wright PC, Burgess JG (1999) Bioprocess intensification for production of novel marine bacterial antibiotics through bioreactor operation and design. Mar Biotechnol 1:495–507

    Article  CAS  Google Scholar 

  • Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101:1–8

    Article  CAS  Google Scholar 

  • Penesyan A, Kjelleberg S, Egan S (2010) Development of novel drugs from marine surface associated microorganisms. Mar Drugs 8:438–459

    Article  CAS  Google Scholar 

  • Pomponi SA (1999) The bioprocess–technological potential of the sea. J Biotechnol 70:5–13

    Article  CAS  Google Scholar 

  • Rahman MS, Ano T (2009) Production characteristics of lipopeptide antibiotics in biofilm fermentation of Bacillus subtilis. J Environ Sci 21(Suppl 1):S36–S39

    Article  Google Scholar 

  • Raunkjær K, Hvitved-Jacobsen T, Nielsen PH (1994) Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res 28:251–262

    Article  Google Scholar 

  • Rodrigues C, Bhosle NB (1991) Exopolysaccharide production by Vibrio fischeri, a fouling marine bacterium. Biofouling 4:301–308

    Article  CAS  Google Scholar 

  • Ruzafa C, Sanchez-Amat A, Solano F (1995) Characterization of the melanogenic system in Vibrio cholerae, ATCC 14035. Pigm Cell Res 8:147–152

    Article  CAS  Google Scholar 

  • Saravanan P, Jayachandran S (2008) Preliminary characterization of exopolysaccharides produced by a marine biofilm-forming bacterium Pseudoalteromonas ruthenica (SBT 033). Lett Appl Microbiol 46:1–6

    Article  CAS  Google Scholar 

  • Sarkar S, Saha M, Roy D, Jaisankar P, Das S, Roy LG, Gachhui R, Sen T, Mukherjee J (2008) Enhanced production of antimicrobial compounds by three salt tolerant actinobacterial strains isolated from the Sundarbans in a niche-mimic bioreactor. Mar Biotechnol 10:518–526

    Article  CAS  Google Scholar 

  • Sarkar S, Mukherjee J, Roy D (2009) Antibiotic production by a marine isolate (MS310) in an ultra-low-speed rotating disk bioreactor. Biotechnol Bioprocess Eng 14:775–780

    Article  CAS  Google Scholar 

  • Sarkar S, Roy D, Mukherjee J (2010a) Production of a potentially novel antimicrobial compound by a biofilm-forming marine Streptomyces sp. in a niche-mimic rotating disk bioreactor. Bioprocess Biosyst Eng 33:207–217

    Article  CAS  Google Scholar 

  • Sarkar S, Roy D, Mukherjee J (2010b) Enhanced protease production in a polymethylmethacrylate conico-cylindrical flask by two biofilm-forming bacteria. Bioresour Technol. doi:10.1016/j.biortech.2010.09.091

  • Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Nat Acad Sci USA 94:6036–6041

    Article  CAS  Google Scholar 

  • Tait K, Williamson H, Atkinson S, Williams P, Cámara M, Joint I (2009) Turnover of quorum sensing signal molecules modulates cross-kingdom signalling. Environ Microbiol 11:1792–1802

    Article  CAS  Google Scholar 

  • Turick CE, Tisa LS, Caccavo F Jr (2002) Melanin production and use as a soluble electron shuttle for Fe (III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl Environ Microbiol 68:2436–2444

    Article  CAS  Google Scholar 

  • Weiner RM, Segall AM, Colwell RR (1985) Characterization of a marine bacterium associated with Crassostrea virginica (the Eastern oyster). Appl Environ Microbiol 49:83–90

    CAS  Google Scholar 

  • Weiner RM, Coyne VE, Brayton P, West P, Raiken SF (1988) Alteromonas colwelliana sp. nov., an isolate from oyster habitats. Int J Syst Bacteriol 38:240–244

    Article  Google Scholar 

  • Yan L, Boyd KG, Grant Burgess J (2002) Surface attachment induced production of antimicrobial compounds by marine epiphytic bacteria using modified roller bottle cultivation. Mar Biotechnol 4:356–366

    Article  CAS  Google Scholar 

  • Yan L, Boyd KG, Adams DR, Burgess JG (2003) Biofilm-specific cross-species induction of antimicrobial compounds in Bacilli. Appl Environ Microbiol 69:3719–3727

    Article  CAS  Google Scholar 

  • Yang Y-H, Lee T-H, Kim JH, Kim EJ, Joo H-S, Lee C-S, Kim B-G (2006) High-throughput detection method of quorum-sensing molecules by colorimetry and its applications. Anal Biochem 356:297–299

    Article  CAS  Google Scholar 

  • Yang LH, Xiong H, Lee OO, Qi S-H, Qian P-Y (2007) Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett Appl Microbiol 44:625–630

    Article  CAS  Google Scholar 

  • Zhao C, Brinkhoff T, Burchardt M, Simon M, Wittstock G (2009) Surface selection, adhesion, and retention behavior of marine bacteria on synthetic organic surfaces using self-assembled monolayers and atomic force microscopy. Ocean Dynam 59:305–315

    Article  Google Scholar 

Download references

Acknowledgments

Financial support to JM, RG (DBT Sanction No. BT/PR11479/AAQ/03/423/2008 and DST-PURSE, 2009-10), and to SS (CSIR No. 09/096-0549-2K8-EMR-I) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Mukherjee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1

Schematic of the conico-cylindrical flask (CCF). 1 Air in; 2 air out; 3 screw cap; 4 upper funnel portion; 5 threading; 6 inner arrangement; 7, 8, 9 rectangular strips of inner arrangement; 10 lower cylindrical portion; 11 base of inner arrangement; 12 top view of inner arrangement with cylindrical base (reproduced with permission from Elsevier). (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, S., Sarkar, S., Gachhui, R. et al. A novel conico-cylindrical flask aids easy identification of critical process parameters for cultivation of marine bacteria. Appl Microbiol Biotechnol 90, 321–330 (2011). https://doi.org/10.1007/s00253-010-3041-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3041-1

Keywords

Navigation