Skip to main content
Log in

Biotechnological production of mannitol and its applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mannitol, a naturally occurring polyol (sugar alcohol), is widely used in the food, pharmaceutical, medical, and chemical industries. The production of mannitol by fermentation has become attractive because of the problems associated with its production chemically. A number of homo- and heterofermentative lactic acid bacteria (LAB), yeasts, and filamentous fungi are known to produce mannitol. In particular, several heterofermentative LAB are excellent producers of mannitol from fructose. These bacteria convert fructose to mannitol with 100% yields from a mixture of glucose and fructose (1:2). Glucose is converted to lactic acid and acetic acid, and fructose is converted to mannitol. The enzyme responsible for conversion of fructose to mannitol is NADPH- or NADH-dependent mannitol dehydrogenase (MDH). Fructose can also be converted to mannitol by using MDH in the presence of the cofactor NADPH or NADH. A two enzyme system can be used for cofactor regeneration with simultaneous conversion of two substrates into two products. Mannitol at 180 g l−1 can be crystallized out from the fermentation broth by cooling crystallization. This paper reviews progress to date in the production of mannitol by fermentation and using enzyme technology, downstream processing, and applications of mannitol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarnikunnas I, von Weymarn N, Ronnholm K, Leisola M, Palva A (2003) Metabolic engineering of Lactobacillus fermentum for production of mannitol and pure l-lactic acid or pyruvate. Biotechnol Bioeng 82:653–663

    Article  CAS  Google Scholar 

  • Adachi O, Toyama H, Matsushita K (1999) Crystalline NADP-dependent D-mannitol dehydrogenase from Gluconobacter suboxydans. Biosci Biotechnol Biochem 63:402–407

    Article  CAS  Google Scholar 

  • Baumchen C, Bringer-Meyer S (2007) Expression of glf Z.m increases D-Mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:545–552

    Article  Google Scholar 

  • Baumchen C, Roth AHFJ, Biedendieck R, Malten M, Follmann M, Sahm H, Bringer-Meyer S, Jahn D (2007) d-Mannitol production by resting state whole cell biotransformation of d-fructose by heterologous mannitol and formate dehydrogenase gene expression in Bacillus megentarium. Biotechnol J 2:1408–1416

    Article  Google Scholar 

  • Boosaeng V, Sullivan PA, Shepherd MG (1976) Mannitol production in fungi during glucose catabolism. Can J Microbiol 22:808–816

    Article  Google Scholar 

  • Brunker P, Altenbuchner J, Kulbe KD, Mattes R (1997) Cloning, nucleotide sequence and expression of a mannitol dehydrogenase gene from Pseudomonas fluorescens DSM 50106 in Escherichia coli. Biochim Biophys Acta 1351:157–167

    CAS  Google Scholar 

  • Busse M, Kindel PK, Gibbs M (1961) The heterolactic fermentation: 3. Positions of 13 C in the products of fructose dissimilation by Leuconostoc mesenteroides. J Biol Chem 236:2850–2853

    CAS  Google Scholar 

  • Chalfan Y, Levy R, Mateles RI (1975) Detection of mannitol formation by bacteria. Appl Microbiol 30:476

    CAS  Google Scholar 

  • Chenault HK, Whitesides GM (1987) Regeneration of nicotinamide cofactors for use in organic synthesis. Appl Biochem Biotechnol 14:147–197

    Article  CAS  Google Scholar 

  • Costenoble R, Adler L, Niklasson C, Liden G (2003) Engineering of the metabolism of Saccharomyces cerevisiae for anaerobic production of mannitol. FEMS Yeast Res 3:17–25

    CAS  Google Scholar 

  • Datta R, Tsai S-P (1997) Lactic acid production and potential uses: a technology and economic assessment. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, DC, pp 224–236

    Chapter  Google Scholar 

  • Daviskas E, Anderson SD, Jaques A, Charlton B (2010) Inhaled mannitol improves the hydration and surface properties of sputum in patients with cystic fibrosis. Chest 137:861–868

    Article  CAS  Google Scholar 

  • De Zeeuw JR, Tynan III EJ (1973) Fermentation process for the production of d-mannitol. U.S. Patent 3,736,229

  • Debord B, Lefebvre C, Guypt-Hermann AM, Hubert J, Bouche R, Guyot JC (1987) Study of different forms of mannitol: comparative behavior under compression. Drug Dev Ind Pharm 13:1533–1546

    Article  CAS  Google Scholar 

  • Deusing I, Buchholz K, Bliesener K (1996) Isolierung von fermentativ hergestelltem d-mannit mittels elektrodialyse und kristallisation. Chem Ing Tech 68:1436–1438

    Article  CAS  Google Scholar 

  • Devos F (1995) Process for the production of mannitol. U.S. Patent 5,466,795

  • Domelsmith LN, Klich MA, Goynes WR (1988) Production of mannitol by fungi from cotton dust. Appl Environ Microbiol 54:1784–1790

    CAS  Google Scholar 

  • El-Kady LA, Moubasher MH, Mostafa ME (1995) Accumulation of sugar alcohols by filamentous fungi. Folia Microbiol 40:481–486

    Article  CAS  Google Scholar 

  • Erten H (1998) Metabolism of fructose as an electron acceptor by Leuconostoc mesenteroides. Proc Biochem 33:735–739

    Article  CAS  Google Scholar 

  • Fontes CPM, Honorato TL, Rabelo MC, Rodrigues S (2009) Kinetic study of mannitol production using cashew apple juice as substrate. Bioprocess Biosyst Eng 32:493–499

    Article  CAS  Google Scholar 

  • Forain T, Schauck AN, Delcour J (1996) 13 C nuclear magnetic resonance analysis of glucose and citrate end products in an IdhL-IdhD double-knockout strain of Lactobacillus plantarum. J Bacteriol 178:7311–7315

    Google Scholar 

  • Galkin A, Kulakova L, Tishkov V, Esaki N, Soda K (1995) Cloning of formate dehydrogenase gene from a methanol-utilizing bacterium Mycobacterium vaccae N10. Appl Microbiol Biotechnol 44:479–483

    Article  CAS  Google Scholar 

  • Gaspar P, Neves AR, Ramos A, Gasson MJ, Shearman CA, Santos H (2004) Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Appl Environ Microbiol 70:1466–1474

    Article  CAS  Google Scholar 

  • Ghoreishi SM, Shahrestani RG (2009) Innovative strategies for engineering mannitol production. Trends Food Sci Technol 20:263–270

    Article  CAS  Google Scholar 

  • Grobben GJ, Peters SWPG, Wisselink HW, Weusthuis RA, Hoefnagel MHN, Hugenholtz J, Eggink G (2001) Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroides grown in the presence of fructose. Appl Environ Microbiol 67:2867–2870

    Article  CAS  Google Scholar 

  • Groleau D, Chevalier P, Tse Hing Yuen TLS (1995) Production of polyols and ethanol by the osmophilic yeast Zygosaccharomyces rouxii. Biotechnol Lett 17:315–320

    Article  CAS  Google Scholar 

  • Hahn G, Kaup B, Bringer-Meyer S, Sahm H (2003) A zinc-containing mannitol-2-dehydrogenase from Leuconostoc pseudomesenteroides ATCC 12291: purification of the enzyme and cloning of the gene. Arch Microbiol 179:101–107

    CAS  Google Scholar 

  • Haltrich D, Nidetzky B, Miemietz G, Gollhofer D, Sabine L, Stolz P, Kulbe KD (1996) Simultaneous enzymatic synthesis of mannitol and gluconic acid: I. Characterization of the enzyme system. Biocatal Biotransformation 14:31–45

    Article  CAS  Google Scholar 

  • Hammes WP, Stolz P, Ganzle M (1996) Metabolism of lactobacilli in traditional sourdoughs. Adv Food Sci 18:176–184

    CAS  Google Scholar 

  • Hattori K, Suzuki T (1974) Large scale production of erythritol and its conversion to d-mannitol production by n-alkane grown Candida zeylanoides. Agric Biol Chem 38:1203–1208

    CAS  Google Scholar 

  • Helanto M, Aarnikunnas J, von Weymarn N, Airaksinen U, Palva A, Leisola M (2005) Improved mannitol production by a random mutant of Leuconostoc pseudomesenteroides. J Biotechnol 116:283–294

    Article  CAS  Google Scholar 

  • Hendriksen HV, Mathiasen TE, Alder-Nissen J, Frisvad JC, Emborg C (1988) Production of mannitol by Penicillium strains. J Chem Technol Biotechnol 43:223–228

    Article  CAS  Google Scholar 

  • Hols P, Ramos A, Hugenholtz J, Delcour J, de Vos WM, Santos H, Kleerebezem M (1999) Acetate utilization in Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining redox balance. J Bacteriol 181:5521–5526

    CAS  Google Scholar 

  • Howaldt M, Gottlob A, Kulbe K, Chmiel H (1988) Simultaneous conversion of glucose/fructose mixtures in a membrane reactor. Ann NY Acad Sci 542:400–404

    Article  CAS  Google Scholar 

  • Hustede H, Haberstroh HJ, Schinig E (1989) Gluconic acid. In: Ullmann’s encyclopedia of industrial chemistry, vol. A12. VCK, Weinheim, pp 449–456

  • Itoh Y, Tanaka A, Araya H, Ogasawara K, Inaba H, Sakamoto Y, Koga J (1992) Lactobacillus sp. B001 and method of producing mannitol, acetic acid and lactic acid. European Patent 486024

  • Johnson JC (1976) Sugar alcohols and derivatives. In: Specialized sugars for the food industry. Noyes Data Corporation, NJ, p 313

  • Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339

    Article  CAS  Google Scholar 

  • Kaup B, Bringer-Meyer S, Sahm H (2005) d-Mannitol formation from glucose in a whole-cell biotransformation with recombinant Escherichia coli. Appl Microbiol Biotechnol 69:397–403

    Article  CAS  Google Scholar 

  • Khan A, Bhide A, Gadre R (2009) Mannitol production from glycerol by resting cells of Candida magnoliae. Bioresour Technol 100:4911–4913

    Article  CAS  Google Scholar 

  • Korakli M, Schwarz E, Wolf G, Hammes WP (2000) Production of mannitol by Lactobacillus sanfranciscensis. Adv Food Sci 22:1–4

    CAS  Google Scholar 

  • Kulbe KD, Schwab U, Gudernatsch W (1987) Enzyme-catalyzed production of mannitol and gluconic acid. Product recovery by various procedures. Ann NY Acad Sci 506:552–568

    Article  CAS  Google Scholar 

  • Lee WH (1967) Carbon balance of a mannitol fermentation and the biosynthetic pathway. Appl Microbiol 15:1206–1210

    CAS  Google Scholar 

  • Lee JK, Oh DK, Song HY, Kim IW (2007) Ca2+ and Cu2+ supplementation increases mannitol production by Candida magnoliae. Biotechnol Lett 29:291–294

    Article  CAS  Google Scholar 

  • Lee JK, Song JY, Kim SY (2003a) Controlling substrate concentration in fed-batch Candida magnoliae culture increases mannitol production. Biotechnol Prog 19:768–775

    Article  CAS  Google Scholar 

  • Lee JK, Koo BS, Kim SY, Hyun HH (2003b) Purification and characterization of a novel mannitol dehydrogenase from a newly isolated strain of Candida magnoliae. Appl Environ Microbiol 69:4438–4447

    Article  CAS  Google Scholar 

  • Liu S, Saha B, Cotta M (2005) Cloning, expression, purification, and analysis of mannitol dehydrogenase gene mtlK from Lactobacillus brevis. Appl Biochem Biotechnol 121–124:391–402

    Article  Google Scholar 

  • Loesche WJ, Kornman KS (1976) Production of mannitol by Streptococcus mutants. Arch Oral Biol 21:551–553

    Article  CAS  Google Scholar 

  • Makkee M, Kieboom APG, Van Bekkum H (1985) Production methods of d-mannitol. Starch/Stärke 37:136–141

    Article  CAS  Google Scholar 

  • Martinez GH, Barker A, Horecker BL (1963) A specific mannitol dehydrogenase from Lactobacillus brevis. J Biol Chem 238:1598–1603

    CAS  Google Scholar 

  • Miller G (2002) Drug targeting. Breaking down barriers. Science 297(5584):1116–1118

    Article  CAS  Google Scholar 

  • Nelson GEN, Johnson DE, Ciegler A (1971) Production of d-mannitol by conidia of Aspergillus candidus. Appl Microbiol 22:484–485

    CAS  Google Scholar 

  • Neves AR, Ramos A, Shearman C, Gasson M, Almeida JS, Santos H (2000) Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13 C-NMR. Eur J Biochem 267:3859–3868

    Article  CAS  Google Scholar 

  • Nidetzky B, Haltrich D, Schmidt K, Schmidt H, Weber A, Kulbe KD (1996) Simultaneous enzymatic synthesis of mannitol and gluconic acid: II. Development of a continuous process for a coupled NAD(H)-dependent enzyme system. Biocatal Biotransformation 14:46–53

    Article  Google Scholar 

  • Niehaus WG Jr, Dilts RP (1982) Purification and characterization of mannitol dehydrogenase from Aspergillus parasiticus. J Bacteriol 1151:243–250

    Google Scholar 

  • Ojamo H, Koivikko H, Heikkila H (2003) Process for the production of mannitol by immobilized micro-organisms. U.S. Patent 6,602,691 B1

  • O’Neill H, Woodward J (2000) The nicotinamide cofactors: applications in biotechnology. In: Saha BC, Demirjian DC (eds) Applied biocatalysis in specialty chemical and pharmaceuticals. American Chemical Society, Washington, DC, pp 103–130

    Google Scholar 

  • Onishi H, Suzuki T (1968) Production of d-mannitol and glycerol by yeasts. Appl Microbiol 16:1847–1852

    CAS  Google Scholar 

  • Onishi H, Suzuki T (1970) Microbial production of d-mannitol and d-fructose from glycerol. Biotechnol Bioeng 12:913–920

    Article  CAS  Google Scholar 

  • Parker C, Barnell WO, Snoep JL, Ingram LO, Conway T (1995) Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of the transport mechanism, kinetics and the role of glucokinase in glucose transport. Mol Microbiol 15:759–802

    Google Scholar 

  • Parmentier S, Arnaut F, Soetaert W, Vandamme EJ (2005) Enzymatic production of D-mannitol with Leuconostoc pseudomesenteroides mannitol dehydrogenase coupled to a coenzyme regeneration system. Biocatal Biotransformation 23:1–7

    Article  CAS  Google Scholar 

  • Perry FR, Green DW, Maloney JO (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New York, pp 2–40

    Google Scholar 

  • Pimentel MS, Silva MH, Cortes I, Faia AM (1994) Growth and metabolism of sugar and acids of Leuconostoc oenos under different conditions of temperature and pH. J Appl Bacteriol 76:42–48

    CAS  Google Scholar 

  • Quain DE, Boulton CA (1987) Growth and metabolism of mannitol by strains of Saccharomyces cerevisiae. J Gen Microbiol 133:1675–1684

    CAS  Google Scholar 

  • Racine FM, Saha BC (2007) Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations. Process Biochem 42:1609–1613

    Article  CAS  Google Scholar 

  • Rapoport SI (2001) Advances in osmotic opening of the blood-brain barrier to enhance CNS chemotherapy. Expert Opin Investig Drugs 10:1809–1818

    Article  CAS  Google Scholar 

  • Saha BC (2003) Production of mannitol by fermentation. In: Saha BC (ed) Fermentation biotechnology. American Chemical Society, Washington, DC, pp 67–85

    Chapter  Google Scholar 

  • Saha BC, Nakamura LK (2003) Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Biotechnol Bioeng 82:864–871

    Article  CAS  Google Scholar 

  • Saha BC (2004) Purification and characterization of a novel mannitol dehydrogenase from Lactobacillus intermedius. Biotechnol Prog 20:537–542

    Article  CAS  Google Scholar 

  • Saha BC (2006a) A low-cost medium for mannitol production by Lactobacillus intermedius NRRL B-3693. Appl Microbiol Biotechnol 72:676–680

    Article  CAS  Google Scholar 

  • Saha BC (2006b) Effect of salt nutrients on mannitol production by Lactobacillus intermedius NRRL B-3693. J Ind Microbiol Biotechnol 33:887–890

    Article  CAS  Google Scholar 

  • Saha BC (2006c) Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with Lactobacillus intermedius NRRL B-3693. Enzyme Microb Technol 39:991–995

    Article  CAS  Google Scholar 

  • Saha BC, Racine FM (2008) Production of mannitol by lactic acid bacteria: a review. In: Hou CT, Shaw JF (eds) Biocatalysis and bioenergy. Wiley, Hoboken, pp 391–404

    Chapter  Google Scholar 

  • Saha BC, Racine FM (2010) Effects of pH and corn steep liquor variability on mannitol production by Lactobacillus intermedius NRRL B-3693. Appl Microbiol Biotechnol 87:553–560

    Google Scholar 

  • Sakai S, Yamanaka K (1968) Crystalline d-mannitol: NAD+ oxidoreductase from Leuconostoc mesenteroides. Biochim Biophys Acta 151:684–686

    CAS  Google Scholar 

  • Salou P, Divies C, Cardona R (1994) Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose. Appl Environ Microbiol 60:1459–1466

    CAS  Google Scholar 

  • Sasaki Y, Laivenieks M, Zeikus JG (2005) Lactobacillus reuteri ATCC 53608 mdh gene cloning and recombinant mannitol dehydrogenase characterization. Appl Microbiol Biotechnol 68:36–41

    Article  CAS  Google Scholar 

  • Schneider KH, Giffhom F (1989) Purification and properties of a polyol dehydrogenase from the phototrophic bacterium Rhodobacter sphaeroides. Eur J Biochem 1184:15–19

    Article  Google Scholar 

  • Schneider KH, Giffhorn F, Kaplan S (1993) Cloning, nucleotide sequence and characterization of the mannitol dehydrogenase gene from Rhodobacter sphaeroides. J Gen Microbiol 139:2475–2484

    CAS  Google Scholar 

  • Schwarz E (1994) In: Elvers B, Hawkins S, Russey W (eds) Ulman’s encyclopedia of industrial chemistry, Vol. A25, 5th edn. VCH, Weinheim, pp 423–426

    Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115:527–532

    CAS  Google Scholar 

  • Slatner M, Nagl G, Haltrich D, Kulbe KD, Nidetzky B (1998) Enzymatic production of pure d-mannitol at high productivity. Biocatal Biotransform 16:351–363

    Article  CAS  Google Scholar 

  • Smiley KL, Cadmus MC, Liepins P (1967) Biosynthesis of d-mannitol from d-glucose by Aspergillus candidus. Biotechnol Bioeng 9:365–374

    Article  CAS  Google Scholar 

  • Soetaert W (1990) Production of mannitol with Leuconostoc mesenteroides. Med Fac Landbouww Rijksuniv Gent 55:1549–1552

    Google Scholar 

  • Soetaert W, Buchholz K, Vandamme EJ (1995) Production of d-mannitol and d-lactic acid by fermentation with Leuconostoc mesenteroides. Agro Food Ind Hi Tech 6:41–44

    CAS  Google Scholar 

  • Soetaert W, Vanhooren PT, Vandamme EJ (1999) The production of d-mannitol by fermentation. Meth Biotechnol 10:261–275

    Article  CAS  Google Scholar 

  • Song HS, Vielle C (2009) Recent advances in the biological production of mannitol. Appl Microbiol Biotechnol 84:55–62

    Article  CAS  Google Scholar 

  • Song HS, Ahluwalia N, Leduc Y, Delbaere LT, Vielle C (2008) Thermotoga maritima TMO 298 is a highly thermostable mannitol dehydrogenase. Appl Microbiol Biotechnol 81:485–495

    Article  CAS  Google Scholar 

  • Song KH, Lee JK, Song JY, Hong SG, Baek H, Kim SY, Hyun HH (2002) Production of mannitol by a novel strain of Candida magnoliae. Biotechnol Lett 24:9–12

    Article  CAS  Google Scholar 

  • Stankovic L, Bilik V, Matulova M (1989) Production of d-mannitol from d-aldopentoses by the yeast Rhodotorula minuta. Folia Microbiol 34:511–514

    Article  CAS  Google Scholar 

  • Stoop JMH, Williamson JD, Conkling MA, MacKay JJ, Pharr DM (1998) Characterization of NAD-dependent mannitol dehydrogenase from celery as affected by ions, chelators, reducing agents and metabolites. Plant Sci 131:43–51

    Article  CAS  Google Scholar 

  • Strandberg GW (1969) d-Mannitol metabolism by Aspergillus candidus. J Bacteriol 97:1305–1309

    CAS  Google Scholar 

  • Takemura M, Iijima M, Tateno Y, Osada Y, Maruyama H (1978) Process for preparing d-mannitol. U.S. Patent 4,083,881

  • Vandamme EJ, Derycke DG (1983) Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol 29:139–176

    Article  CAS  Google Scholar 

  • Vandamme EJ, Soetaert W (1995) Biotechnical modification of carbohydrates. FEMS Microbiol Rev 16:163–186

    Article  CAS  Google Scholar 

  • Viikari L, Korhola M (1986) Fructose metabolism in Zymomonas mobilis. Appl Microbiol Biotechnol 24:471–476

    Article  CAS  Google Scholar 

  • von Weymarn FNW, Hujanen M, Leisola MSA (2002a) Production of D-mannitol by heterofermentative lactic acid bacteria. Proc Biochem 37:1207–1213

    Article  Google Scholar 

  • von Weymarn N, Kiviharju K, Leisola M (2002b) High-level production of d-mannitol with membrane cell-recycle bioreactor. J Ind Microbiol Biotechnol 29:44–49

    Article  Google Scholar 

  • von Weymarn FNW, Kiviharju KJ, Jaaskelainen SP, Leisola MSA (2003) Scale-up of a new bacterial mannitol production process. Biotechnol Prog 19:815–821

    Article  Google Scholar 

  • Weisser P, Kramer R, Sahm H, Sprenger GA (1995) Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action. J Bacteriol 177:3351–3354

    CAS  Google Scholar 

  • Wichmann R, Wandrey C, Buckmann AF, Kula MR (1981) Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Biotechnol Bioeng 23:2789–2802

    Article  CAS  Google Scholar 

  • Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161

    Article  CAS  Google Scholar 

  • Wisselink HW, Mars AE, van der Meer P, Eggink G, Hugenholtz J (2004) Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol-1-phosphate dehydrogenase in different genetic backgrounds. Appl Environ Microbiol 76:4286–4292

    Article  Google Scholar 

  • Yamada H, Okamoto K, Kodama K, Noguchi F, Tanaka S (1961) Enzymic studies on mannitol formation by Piricularia oryzae. J Biochem Tokyo 49:40–410

    Google Scholar 

  • Yun JW, Song SK (1994) Production of extracellular polyols in Aureobasidium pullulans. Biotechnol Lett 16:949–954

    Article  CAS  Google Scholar 

  • Yun JW, Kim DH (1998) A comparative study of mannitol production by two lactic acid bacteria. J Ferment Bioeng 85:203–208

    Article  CAS  Google Scholar 

  • Yun JW, Kang SC, Song SK (1996a) Mannitol accumulation during fermentation of kimchi. J Ferment Bioeng 81:279–280

    Article  CAS  Google Scholar 

  • Yun JW, Kang SC, Song SK (1996b) Microbial transformation of fructose to mannitol by Lactobacillus sp. KY-107. Biotechnol Lett 18:35–40

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badal C. Saha.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, B.C., Racine, F.M. Biotechnological production of mannitol and its applications. Appl Microbiol Biotechnol 89, 879–891 (2011). https://doi.org/10.1007/s00253-010-2979-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2979-3

Keywords

Navigation