Skip to main content
Log in

Extracellular accumulation of recombinant protein by Escherichia coli in a defined medium

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Extracellular accumulation of recombinant proteins in the culture medium of Escherichia coli is desirable but difficult to obtain. The inner or cytoplasmic membrane and the outer membrane of E. coli are two barriers for releasing recombinant proteins expressed in the cytoplasm into the culture medium. Even if recombinant proteins have been exported into the periplasm, a space between the outer membrane and the inner membrane, the outer membrane remains the last barrier for their extracellular release. However, when E. coli was cultured in a particular defined medium, recombinant proteins exported into the periplasm could diffuse into the culture medium automatically. If a nonionic detergent, Triton X-100, was added in the medium, recombinant proteins expressed in the cytoplasm could also be released into the culture medium. It was then that extracellular accumulation of recombinant proteins could be obtained by exporting them into the periplasm or releasing them from the cytoplasm with Triton X-100 addition. The tactics described herein provided simple and valuable methods for achieving extracellular production of recombinant proteins in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bayer ME, Bayer MH, Lunn CA, Pigiet V (1987) Association of thioredoxin with the inner membrane and adhesion sites in Escherichia coli. J Bacteriol 169:2659–2666

    CAS  Google Scholar 

  • Beshay U, Miksch G, Friehs K, Flaschel E (2007) Increasing the secretion ability of the kil gene for recombinant proteins in Escherichia coli by using a strong stationary-phase promoter. Biotechnol Lett 29:1893–1901

    Article  CAS  Google Scholar 

  • Birdsell DC, Cota-Robles EH (1968) Lysis of spheroplasts of Escherichia coli by a non-ionic detergent. Biochem Biophys Res Commun 31:438–446

    Article  CAS  Google Scholar 

  • Bowden GA, Georgiou G (1990) Folding and aggregation of β-lactamase in the periplasmic space of Escherichia coli. J Biol Chem 265:16760–16766

    CAS  Google Scholar 

  • Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635

    Article  CAS  Google Scholar 

  • Choi JH, Jeong KJ, Kim SC, Lee SY (2000) Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coli using the Bacillus sp. endoxylanase signal sequence. Appl Microbiol Biotechnol 53:640–645

    Article  CAS  Google Scholar 

  • de Marco A, Casatta E, Savaresi S, Geerlof A (2004) Recombinant proteins fused to thermostable partners can be purified by heat incubation. J Biotechnol 107:125–133

    Article  Google Scholar 

  • Fu XY, Tong WY, Wei DZ (2005) Extracellular production of human parathyroid hormone as a thioredoxin fusion form in Escherichia coli by chemical permeabilization combined with heat treatment. Biotechnol Prog 21:1429–1435

    Article  CAS  Google Scholar 

  • Ghrayeb J, Kimura H, Takahara M, Hsiung H, Masui Y, Inouye M (1984) Secretion cloning vectors in Escherichia coli. EMBO J 3:2437–2442

    CAS  Google Scholar 

  • Gumpert J, Hoischen C (1998) Use of cell wall-less bacteria (L-forms) for efficient expression and secretion of heterologous gene products. Curr Opin Biotechnol 9:506–509

    Article  CAS  Google Scholar 

  • Guo QR, Wei DZ, Tong WY (2006) Partial purification of human parathyroid hormone 1-84 as a thioredoxin fusion form in recombinant Escherichia coli by thermoosmotic shock. Protein Expr Purif 49:32–38

    Article  CAS  Google Scholar 

  • Hannig G, Makrides SC (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 16:54–60

    Article  CAS  Google Scholar 

  • Hartmann BM, Kaar W, Yoo IK, Lua LH, Falconer RJ, Middelberg AP (2009) The chromatography-free release, isolation and purification of recombinant peptide for fibril self-assembly. Biotechnol Bioeng 104:973–985

    Article  CAS  Google Scholar 

  • Jeong KJ, Lee SY (1999) High-level production of human leptin by fed-batch cultivation of recombinant Escherichia coli and its purification. Appl Environ Microbiol 65:3027–3032

    CAS  Google Scholar 

  • Jeong KJ, Lee SY (2002) Excretion of human β-endorphin into culture medium by using outer membrane protein F as a fusion partner in recombinant Escherichia coli. Appl Environ Microbiol 68:4979–4985

    Article  CAS  Google Scholar 

  • Jermy A (2009) Bacterial secretion: turning the cogs in type VI secretion. Nat Rev Microbiol 7:175–176

    Article  CAS  Google Scholar 

  • Jonasson P, Liljeqvist S, Nygren PA, Stahl S (2002) Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol Appl Biochem 35:91–105

    Article  CAS  Google Scholar 

  • Kaderbhai N, Karim A, Hankey W, Jenkins G, Venning J, Kaderbhai MA (1997) Glycine-induced extracellular secretion of a recombinant cytochrome expressed in Escherichia coli. Biotechnol Appl Biochem 25(Pt 1):53–61

    CAS  Google Scholar 

  • Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    Article  CAS  Google Scholar 

  • LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 11:187–193

    Article  CAS  Google Scholar 

  • Loo T, Patchett ML, Norris GE, Lott JS (2002) Using secretion to solve a solubility problem: high-yield expression in Escherichia coli and purification of the bacterial glycoamidase PNGase F. Protein Expr Purif 24:90–98

    Article  CAS  Google Scholar 

  • Naglak TJ, Wang HY (1990) Recovery of a foreign protein from the periplasm of Escherichia coli by chemical permeabilization. Enzyme Microb Technol 12:603–611

    Article  CAS  Google Scholar 

  • Naglak TJ, Wang HY (1992) Rapid protein release from Escherichia coli by chemical permeabilization under fermentation conditions. Biotechnol Bioeng 39:732–740

    Article  CAS  Google Scholar 

  • Ni Y, Chen R (2009) Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett 31:1661–1670

    Article  CAS  Google Scholar 

  • Ni Y, Chen RR (2004) Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnol Bioeng 87:804–811

    Article  CAS  Google Scholar 

  • Nixdorff K, Gmeiner J, Martin HH (1978) Interaction of lipopolysaccharide with detergents and its possible role in the detergent resistance of the outer membrane of Gram-negative bacteria. Biochim Biophys Acta 510:87–98

    Article  CAS  Google Scholar 

  • Qian ZG, Xia XX, Choi JH, Lee SY (2008) Proteome-based identification of fusion partner for high-level extracellular production of recombinant proteins in Escherichia coli. Biotechnol Bioeng 101:587–601

    Article  CAS  Google Scholar 

  • Rahman RN, Leow TC, Basri M, Salleh AB (2005) Secretory expression of thermostable T1 lipase through bacteriocin release protein. Protein Expr Purif 40:411–416

    Article  CAS  Google Scholar 

  • Robbens J, Raeymaekers A, Steidler L, Fiers W, Remaut E (1995) Production of soluble and active recombinant murine interleukin-2 in Escherichia coli: high level expression, Kil-induced release, and purification. Protein Expr Purif 6:481–486

    Article  CAS  Google Scholar 

  • Ryan W, Parulekar SJ (1991) Recombinant protein excretion in Escherichia coli JM103[pUC8]: effects of plasmid content, ethylenediaminetetraacetate, and phenethyl alcohol on cell membrane permeability. Biotechnol Bioeng 37:430–444

    Article  CAS  Google Scholar 

  • Schnaitman CA (1971) Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100. J Bacteriol 108:545–552

    CAS  Google Scholar 

  • Shin HD, Chen RR (2008) Extracellular recombinant protein production from an Escherichia coli lpp deletion mutant. Biotechnol Bioeng 101:1288–1296

    Article  CAS  Google Scholar 

  • van der Wal FJ, ten Hagen-Jongman CM, Oudega B, Luirink J (1995) Optimization of bacteriocin-release-protein-induced protein release by Escherichia coli: extracellular production of the periplasmic molecular chaperone FaeE. Appl Microbiol Biotechnol 44:459–465

    Article  Google Scholar 

  • Woldringh CL (1970) Lysis of the cell membrane of Escherichia coli K12 by ionic detergents. Biochim Biophys Acta 224:288–290

    CAS  Google Scholar 

  • Yang J, Moyana T, MacKenzie S, Xia Q, Xiang J (1998) One hundred seventy-fold increase in excretion of an FV fragment-tumor necrosis factor alpha fusion protein (sFV/TNF-α) from Escherichia coli caused by the synergistic effects of glycine and Triton X-100. Appl Environ Microbiol 64:2869–2874

    CAS  Google Scholar 

  • Zhang G, Brokx S, Weiner JH (2006) Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat Biotechnol 24:100–104

    Article  CAS  Google Scholar 

  • Zhao F, Yu J (2001) L-asparaginase release from Escherichia coli cells with K2HPO4 and Triton X-100. Biotechnol Prog 17:490–494

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by China Postdoctoral Science Foundation (grant no. 20060400682) and by the Knowledge Innovation Program of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (grant no. 2007KIP405). I would like to thank my co-tutor Prof. Wei-Hong Jiang and Prof. Sheng Yang for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Yang Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, XY. Extracellular accumulation of recombinant protein by Escherichia coli in a defined medium. Appl Microbiol Biotechnol 88, 75–86 (2010). https://doi.org/10.1007/s00253-010-2718-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2718-9

Keywords

Navigation