Skip to main content
Log in

Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The flavin-free azoreductase from Xenophilus azovorans KF46F (AzoB), which has been the very first characterized oxygen-tolerant azoreductase, was analyzed in comparison to various recently described flavin-containing azoreductases from different bacterial sources. Sequence comparisons demonstrated that the azoreductase from X. azovorans KF46F is a member of the NmrA family of proteins and demonstrates 30% sequence identity with a NADPH-dependent quinone oxidoreductase from Escherichia coli (encoded by ytfG). In contrast, it was found that the flavin-containing azoreductases from E. coli OY1-2 (AZR), Bacillus sp. OY1-2 (AZR) and related azoreductases all belong to the FMN_red superfamily of enzymes. The substrate specificity of AzoB was reanalyzed in respect to the recently characterized flavin-containing azoreductases, and it was found that purified AzoB converted in addition to different ortho-hydroxy azo compounds [such as Orange II = 1-(4′-sulfophenylazo)-2-naphthol] also the simple non-hydroxylated non-sulfonated azo dye Methyl Red (4′-dimethylaminoazobenzene-2-carboxylic acid), but no indications for the conversion of quinones were obtained. Significant differences were observed in the substrate specificities between AzoB and the flavin-containing azoreductases. The kinetic analysis of the turn-over of Orange II by AzoB suggested an ordered bireactant reaction mechanism which was different from the ping-pong mechanism suggested for the flavin-containing azoreductases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott LC, Batchelor SN, Oakes J, Gilbert BC, Whitwood AC, Smith JRL, Moore JN (2005) Experimental and computational studies of structure and bonding in parent and reduced forms of azo dye Orange II. J Phys Chem 109:2894–2905

    CAS  Google Scholar 

  • Abbott LC, Batchelor SN, Smith JRL, Moore JN (2009) Reductive reaction mechanism of the azo dye Orange II in aqueous solution and in cellulose: from radical intermediates to products. J Phys Chem 113:6091–6103

    CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Bekárek V, Rothschein K, Veteănik P, Večeřa M (1968) Estimation of azo-hydrazo tautomeric equilibrium in ortho-hydroxy azocompounds by N.M.R. Tetrahedron Lett 34:3711–3713

    Article  Google Scholar 

  • Bin Y, Jiti Z, Jing W, Cuihong D, Hongman H, Zhiyong S, Yongming B (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236:129–136

    Article  Google Scholar 

  • Blümel S, Stolz A (2003) Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24. Appl Microbiol Biotechnol 62:186–190

    Article  Google Scholar 

  • Blümel S, Busse H-J, Stolz A, Kämpfer P (2001a) Xenophilus azovorans gen. nov. sp. nov., a soil bacterium able to degrade azo dyes of the Orange II type. Int J Syst Evol Bacteriol 51:1831–1837

    Google Scholar 

  • Blümel S, Mark B, Busse H-J, Kämpfer P, Stolz A (2001b) Pigmentiphaga kullae gen. nov., sp. nov., a new member of the family Alcaligenaceae with the ability to decolorize aerobically azo dyes. Int J Syst Evol Bacteriol 51:1867–1871

    Google Scholar 

  • Blümel S, Knackmuss H-J, Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68:3948–3955

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chen H (2006) Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci 7:101–111

    Article  CAS  Google Scholar 

  • Chen H, Wang R-F, Cerniglia CE (2004) Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Prot Exp Purif 34:302–310

    Article  CAS  Google Scholar 

  • Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441

    Article  CAS  Google Scholar 

  • Chen H, Xu H, Kweon O, Chen S, Cerniglia CE (2008) Functional role of Trp-105 of Enterococcus faecalis azoreductase (AzoA) as resolved by structural and mutational analysis. Microbiology 154:2659–2667

    Article  CAS  Google Scholar 

  • Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86:2172–2175

    Article  CAS  Google Scholar 

  • Deller S, Sollner S, Trenker-El-Toukhy R, Jelesarov I, Gübitz GM, Macheroux R (2006) Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry 45:7083–7091

    Article  CAS  Google Scholar 

  • Douhal A, Sanz M, Tormo L (2005) Femtochemistry of Orange II in solution and in chemical and biological nanocavities. Proc Natl Acad Sci USA 102:18807–18812

    Article  CAS  Google Scholar 

  • Florence TM (1965a) Polarography of aromatic azo compounds. I. Effect of substituents on the electroreduction of azo compounds. Aust J Chem 18:609–618

    CAS  Google Scholar 

  • Florence TM (1965b) Kinetic studies of the disproportionation of 4-aminohydrazobenzene-4′-sulphonic acid. Aust J Chem 18:619–626

    CAS  Google Scholar 

  • Ito K, Nakanishi M, Lee W-C, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2006) Three-dimensional structure of AzoR from Escherichia coli. An oxidoreductase conserved in microorganisms. J Biol Chem 281:20567–20576

    Article  CAS  Google Scholar 

  • Ito K, Nakanishi M, Lee W-C, Zhi Y, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2008) Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. J Biol Chem 283:13889–13896

    Article  CAS  Google Scholar 

  • Kim I-K, Yim H-S, Kim M-K, Kim D-W, Kim Y-M, Cha S-C, Kang S-O (2008) Crystal structure of a new type of NADPH-dependent quinone oxidoreductase (QOR2) from Escherichia coli. J Mol Biol 379:372–384

    Article  CAS  Google Scholar 

  • Kudlich M, Hetheridge MJ, Knackmuss H-J, Stolz A (1999) Autoxidation reactions of different aromatic o-aminohydroxynaphthalenes that are formed during the anaerobic reduction of sulfonated azo dyes. Environ Sci Technol 33:896–901

    Article  CAS  Google Scholar 

  • Kulla HG (1981) Aerobic bacterial degradation of azo dyes. In: Leisinger T, Cook AM, Nüesch J, Hütter R (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic Press, London, pp 387–399

    Google Scholar 

  • Kulla HG, Krieg R, Zimmermann T, Leisinger T (1984) Experimental evolution of azo dye-degrading bacteria. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society of Microbiology, Washington, pp 663–667

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lamb HK, Leslie K, Dodds AL, Nutley M, Cooper A, Johnson C, Thompson P, Stammers DK, Hawkins AR (2003) The negative transcriptional regulator NmrA discriminates between oxidized and reduced dinucleotides. J Biol Chem 278:32107–32114

    Article  CAS  Google Scholar 

  • Liu G, Zhou J, Lv H, Xiang X, Wang J, Zhou M, Qv Y (2007a) Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin that also functions as nitroreductase and flavin mononucleotide reductase. Appl Microbiol Biotechnol 76:1271–1279

    Article  CAS  Google Scholar 

  • Liu ZJ, Chen H, Shaw N, Hopper SL, Chen L, Chen S, Cerniglia CE, Wang BC (2007b) Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch Biochem Biophys 463:68–77

    Article  CAS  Google Scholar 

  • Liu G, Zhou J, Jin R, Zhou M, Wang J, Lu H, Qu J (2008) Enhancing survival of Escherichia coli by expression of azoreductase AZR possessing quinone reductase activity. Appl Microbiol Biotechnol 80:409–416

    Article  CAS  Google Scholar 

  • Liu G, Zhou J, Fu QS, Wang J (2009) The Escherichia coli azoreductase AzoR is involved in resistance to thiol-specific stress caused by electrophilic quinones. J Bacteriol 191:6394–6400

    Article  CAS  Google Scholar 

  • Nakanishi M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399

    Article  CAS  Google Scholar 

  • Núñez-Corcuera B, Serafimidis I, Arias-Polomo E, Rivera-Calzada A, Suarez T (2008) A new protein carrying an NmrA-like domain is required for cell differentiation and development in Dictyostelium discoideum. Dev Biol 321:331–342

    Article  Google Scholar 

  • Ooi T, Shibata T, Sato R, Ohno H, Kinoshita S, Thuoc TL, Taguchi S (2007) An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization. Appl Microbiol Biotechnol 75:377–386

    Article  CAS  Google Scholar 

  • Patai S (1975) The chemistry of the hydrazo, azo and azoxy groups. John Wiley & Sons, London

    Book  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Schellenberg M, Steinmetz R (1969) Die reductive Spaltung von Azofarbstoffen durch Dihydrochinoxaline. Helv Chim Acta 52:431–448

    Article  CAS  Google Scholar 

  • Segel IH (1975) Enzyme kinetics. John Wiley & Sons, New York

    Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  • Stumpp T, Wilms B, Altenbuchner J (2000) Ein neues, l-Rhamnose-induzierbares Expressionssystem für Escherichia coli. Biospektrum 6:33–36

    CAS  Google Scholar 

  • Sugiura W, Miyashita T, Yokoyama T, Arai M (1999) Isolation of azo-dye-degrading microorganisms and their application to white discharge printing of fabric. J Biosci Bioeng 88:577–581

    Article  CAS  Google Scholar 

  • Sugiura W, Yoda T, Matsuba T, Tanaka Y, Suzuki Y (2006) Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophilus. Biosci Biotechnol Biochem 70:1655–1665

    Article  CAS  Google Scholar 

  • Suzuki Y, Yoda T, Ruhul A, Sugiura W (2001) Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. J Biol Chem 276:9059–9065

    Article  CAS  Google Scholar 

  • Wang C-J, Hagemeier C, Rahman N, Lowe E, Noble M, Coughtrie M, Sim E, Westwood I (2007) Molecular cloning, characterisation and ligand-bound structure of an azoreductase from Pseudomonas aeruginosa. J Mol Biol 373:1213–1228

    Article  CAS  Google Scholar 

  • Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf HU, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946

    Article  CAS  Google Scholar 

  • Wong KH, Hynes MJ, Todd RB, Davis MA (2007) Transcriptional control of nmrA by the bZIP transcription factor MeaB reveals a new level of nitrogen regulation in Aspergillus nidulans. Mol Microbiol 66:534–551

    Article  CAS  Google Scholar 

  • Wu K, Knox R, Sun XZ, Joseph P, Jaiswal AK, Zhang D, Deng PS-K, Chen S (1997) Catalytic properties of NAD(P)H:quinone oxidoreductase-2 (NQO2), a dihydronicotinamide riboside dependent oxidoreductase. Arch Biochem Biophys 347:221–228

    Article  CAS  Google Scholar 

  • Zimmermann T, Kulla HG, Leisinger T (1982) Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 129:197–203

    Article  CAS  Google Scholar 

  • Zimmermann T, Gasser F, Kulla HG, Leisinger T (1984) Comparison of two azoreductases acquired during adaptation to growth on azo dyes. Arch Microbiol 138:37–43

    Article  CAS  Google Scholar 

  • Zollinger H (1991) Color chemistry, 2nd edn. VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stolz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürger, S., Stolz, A. Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases. Appl Microbiol Biotechnol 87, 2067–2076 (2010). https://doi.org/10.1007/s00253-010-2669-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2669-1

Keywords

Navigation