Skip to main content

Advertisement

Log in

Characterization of catabolic meta-nitrophenol nitroreductase from Cupriavidus necator JMP134

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cupriavidus necator JMP134 utilizes meta-nitrophenol (MNP) as a sole source of carbon, nitrogen, and energy. The metabolic reconstruction of MNP degradation performed in silico suggested that the mnp cluster might have played important roles in MNP degradation. In order to experimentally confirm the prediction, we have now characterized mnpA-encoded meta-nitrophenol nitroreductase involved in the initial reaction of MNP degradation. Real-time PCR analysis indicated that mnpA played an essential role in MNP degradation. MnpA was purified to homogeneity as His-tagged proteins and was considered to be a dimer as determined by gel filtration. MnpA was an MNP nitroreductase with a tightly bound flavin mononucleotide (FMN), catalyzing the partial reduction of MNP to meta-hydroxylaminophenol via meta-nitrosophenol in the presence of NADPH and oxygen. The accumulation of meta-nitrosophenol was confirmed with the results of liquid chromatography–diode array detection and time-of-flight mass spectrometry for the first time. The low Km and high kcat of MnpA as well as MNP-inducible transcription of mnpA suggested that MNP was the physiological substrate for this nitroreductase. In addition, the phylogenetic analysis revealed that nitroreductases of known physiological function including MnpA constituted a new clade in the nitro-FMN-reductase superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Becker AR, Sternson LA (1980) Non-enzymatic reduction of nitrosobenzene to phenylhydroxylamine by NAD(P)H. Bioorg Chem 9:305–312

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bruhn C, Lenke H, Knackmuss HJ (1987) Nitrosubstituted aromatic-compounds as nitrogen-source for bacteria. Appl Environ Microbiol 53:208–210

    CAS  Google Scholar 

  • Do CB, Mahabhashyam MS, Brudno M, Batzoglou S (2005) ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res 15:330–340

    Article  CAS  Google Scholar 

  • Groenewegen PE, Breeuwer P, van Helvoort JM, Langenhoff AA, de Vries FP, de Bont JA (1992) Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J Gen Microbiol 138:1599–1605

    CAS  Google Scholar 

  • Hughes MA, Williams PA (2001) Cloning and characterization of the pnb genes, encoding enzymes for 4-nitrobenzoate catabolism in Pseudomonas putida TW3. J Bacteriol 183:1225–1232

    Article  CAS  Google Scholar 

  • Iwaki H, Muraki T, Ishihara S, Hasegawa Y, Rankin KN, Sulea T, Boyd J, Lau PCK (2007) Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J Bacteriol 189:3502–3514

    Article  CAS  Google Scholar 

  • Jain RK, Dreisbach JH, Spain JC (1994) Biodegradation of p-nitrophenol via 1, 2, 4-benzenetriol by an Arthrobacter sp. Appl Environ Microbiol 60:3030–3032

    CAS  Google Scholar 

  • Kitagawa W, Kimura N, Kamagata Y (2004) A novel p-nitrophenol degradation gene cluster from a Gram-positive bacterium, Rhodococcus opacus SAO101. J Bacteriol 186:4894–4902

    Article  CAS  Google Scholar 

  • Kuhm AE, Schlomann M, Knackmuss HJ, Pieper DH (1990) Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP134. Biochem J 266:877–883

    CAS  Google Scholar 

  • Leskovac V, Svircevic J, Trivic S, Popovic M, Radulovic M (1989) Reduction of aryl nitroso-compounds by pyridine and flavin coenzymes. Int J Biochem 21:825–834

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Louie TM, Webster CM, Xun LY (2002) Genetic and biochemical characterization of a 2, 4, 6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 184:3492–3500

    Article  CAS  Google Scholar 

  • Meulenberg R, Pepi M, de Bont JA (1996) Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1, 2, 4-benzenetriol. Biodegradation 7:303–311

    Article  CAS  Google Scholar 

  • Ooi T, Shibata T, Sato R, Ohno H, Kinoshita S, Thuoc TL, Taguchi S (2007) An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization. Appl Environ Microbiol 75:377–386

    CAS  Google Scholar 

  • Park HS, Kim HS (2000) Identification and characterization of the nitrobenzene catabolic plasmids pNB1 and pNB2 in Pseudomonas putida HS12. J Bacteriol 182:573–580

    Article  CAS  Google Scholar 

  • Perez-Pantoja D, De la Iglesia R, Pieper DH, Gonzalez B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–794

    Article  CAS  Google Scholar 

  • Perez-Reinado E, Blasco R, Castillo F, Moreno-Vivian C, Roldan MD (2005) Regulation and characterization of two nitroreductase genes, nprA and nprB, of Rhodobacter capsulatus. Appl Environ Microbiol 71:7643–7649

    Article  CAS  Google Scholar 

  • Race PR, Lovering AL, Green RM, Ossor A, White SA, Searle PF, Wrighton CJ, Hyde EI (2005) Structural and mechanistic studies of Escherichia coli nitroreductase with the antibiotic nitrofurazone. Reversed binding orientations in different redox states of the enzyme. J Biol Chem 280:13256–13264

    Article  CAS  Google Scholar 

  • Rau J, Stolz A (2003) Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases. Appl Environ Microbiol 69:3448–3455

    Article  CAS  Google Scholar 

  • Rieger PG, Meier HM, Gerle M, Vogt U, Groth T, Knackmuss HJ (2002) Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. J Biotechnol 94:101–123

    Article  CAS  Google Scholar 

  • Roldan MD, Perez-Reinado E, Castillo F, Moreno-Vivian C (2008) Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 32:474–500

    Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schenzle A, Lenke H, Fischer P, Williams PA, Knackmuss H (1997) Catabolism of 3-nitrophenol by Ralstonia eutropha JMP134. Appl Environ Microbiol 63:1421–1427

    CAS  Google Scholar 

  • Schenzle A, Lenke H, Spain JC, Knackmuss HJ (1999a) 3-Hydroxylaminophenol mutase from Ralstonia eutropha JMP134 catalyzes a Bamberger rearrangement. J Bacteriol 181:1444–1450

    CAS  Google Scholar 

  • Schenzle A, Lenke H, Spain JC, Knackmuss HJ (1999b) Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134. Appl Environ Microbiol 65:2317–2323

    CAS  Google Scholar 

  • Somerville CC, Nishino SF, Spain JC (1995) Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J Bacteriol 177:3837–3842

    CAS  Google Scholar 

  • Spain JC, Wyss O, Gibson DT (1979) Enzymatic oxidation of p-nitrophenol. Biochem Biophys Res Commun 88:634–641

    Article  CAS  Google Scholar 

  • Streker K, Freiberg C, Labischinski H, Hacker J, Ohlsen K (2005) Staphylococcus aureus NfrA (SA0367) is a flavin mononucleotide-dependent NADPH oxidase involved in oxidative stress response. J Bacteriol 187:2249–2256

    Article  CAS  Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:201–204

    Article  CAS  Google Scholar 

  • Whiteway J, Koziarz P, Veall J, Sandhu N, Kumar P, Hoecher B, Lambert IB (1998) Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J Bacteriol 180:5529–5539

    CAS  Google Scholar 

  • Wu JF, Jiang CY, Wang BJ, Ma YF, Liu ZP, Liu SJ (2006) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB1. Appl Environ Microbiol 72:1759–1765

    Article  CAS  Google Scholar 

  • Xiao Y, Wu JF, Liu H, Wang SJ, Liu SJ, Zhou NY (2006) Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73. Appl Microbiol Biotechnol 73:166–171

    Article  CAS  Google Scholar 

  • Xiao Y, Zhang JJ, Liu H, Zhou NY (2007) Molecular characterization of a novel ortho-nitrophenol catabolic gene cluster in Alcaligenes sp. strain NyZ215. J Bacteriol 189:6587–6593

    Article  CAS  Google Scholar 

  • Zeyer J, Kearney PC (1984) Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. J Agric Food Chem 32:238–242

    Article  CAS  Google Scholar 

  • Zeyer J, Kocher HP (1988) Purification and characterization of a bacterial nitrophenol oxygenase which converts ortho-nitrophenol to catechol and nitrite. J Bacteriol 170:1789–1794

    CAS  Google Scholar 

  • Zhang JJ, Liu H, Xiao Y, Zhang XE, Zhou NY (2009) Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. J Bacteriol 191:2703–2710

    Article  CAS  Google Scholar 

  • Zhen D, Liu H, Wang SJ, Zhang JJ, Zhao F, Zhou NY (2006) Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida ZWL73. Appl Microbiol Biotechnol 72:797–803

    Article  CAS  Google Scholar 

  • Zhou NY, Fuenmayor SL, Williams PA (2001) nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J Bacteriol 183:700–708

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial supports from the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-G-072-3) and National Natural Science Foundation of China (30730002 and 20825520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning-Yi Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Xiao, Y., Liu, HZ. et al. Characterization of catabolic meta-nitrophenol nitroreductase from Cupriavidus necator JMP134. Appl Microbiol Biotechnol 87, 2077–2085 (2010). https://doi.org/10.1007/s00253-010-2666-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2666-4

Keywords

Navigation