Skip to main content
Log in

Asymmetric synthesis of (S)-3-chloro-1-phenyl-1-propanol using Saccharomyces cerevisiae reductase with high enantioselectivity

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

3-Chloro-1-phenyl-1-propanol is used as a chiral intermediate in the synthesis of antidepressant drugs. Various microbial reductases were expressed in Escherichia coli, and their activities toward 3-chloro-1-phenyl-1-propanone were evaluated. The yeast reductase YOL151W (GenBank locus tag) exhibited the highest level of activity and exclusively generated the (S)-alcohol. Recombinant YOL151W was purified by Ni-nitrilotriacetic acid (Ni-NTA) and desalting column chromatography. It displayed an optimal temperature and pH of 40°C and 7.5–8.0, respectively. The glucose dehydrogenase coupling reaction was introduced as an NADPH regeneration system. NaOH solution was occasionally added to maintain the reaction solution pH within the range of 7.0–7.5. By using this reaction system, the substrate (30 mM) could be completely converted to the (S)-alcohol product with an enantiomeric excess value of 100%. A homology model of YOL151W was constructed based on the structure of Sporobolomyces salmonicolor carbonyl reductase (Protein Data Bank ID: 1Y1P). A docking model of YOL151W with NADPH and 3-chloro-1-phenyl-1-propanone was then constructed, which showed that the cofactor and substrate bound tightly to the active site of the enzyme in the lowest free energy state and explained how the (S)-alcohol was produced exclusively in the reduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews M, Brown A, Chiva JY, Fradet D, Gordon D, Lansdell M, MacKenny M (2009) Design and optimization of selective serotonin re-uptake inhibitors with high synthetic accessibility. Part 1. Bioorg Med Chem Lett 19:2329–2332

    Article  CAS  Google Scholar 

  • Brautigam S, Bringer-Meyer S, Weuster-Botz D (2007) Asymmetric whole cell biotransformations in biphasic ionic liquid/water-systems by use of recombinant Escherichia coli with intracellular cofactor regeneration. Tetrahedron Asymmetr 18:1883–1887

    Article  Google Scholar 

  • Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  • Ema T, Yagasaki H, Okita N, Takeda M, Sakai T (2006) Asymmetric reduction of ketones using recombinant E. coli cells that produce a versatile carbonyl reductase with high enantioselectivity and broad substrate specificity. Tetrahedron 62:6143–6149

    Article  CAS  Google Scholar 

  • Ernst M, Kaup B, Muller M, Bringer-Meyer S, Sahm H (2005) Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase. Appl Microbiol Biotechnol 66:629–634

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GERMA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian, Inc., Wallingford

    Google Scholar 

  • Goldberg K, Schroer K, Lütz S, Liese A (2007) Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols-part I: processes with isolated enzymes. Appl Microbiol Biotechnol 76:237–248

    Article  CAS  Google Scholar 

  • Huang B, Schroeder M (2008) Using protein binding site prediction to improve protein docking. Gene 422:14–21

    Article  CAS  Google Scholar 

  • Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  Google Scholar 

  • Inoue K, Makino Y, Itoh N (2005) Production of (R)-chiral alcohols by a hydrogen-transfer bioreduction with NADH-dependent Leifsonia alcohol dehydrogenase (LSADH). Tetrahedron: Assymmetry 16:2539–2549

    Article  CAS  Google Scholar 

  • Kaluzna IA, Feske BD, Wittayanan W, Ghiviriga I, Stewart JD (2005) Stereoselective, biocatalytic reductions of α-chloro-β-keto esters. J Org Chem 70:342–345

    Article  CAS  Google Scholar 

  • Kamitori S, Iguchi A, Ohtaki A, Yamada M, Kita K (2005) X-ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reductions of carbonyl compounds. J Mol Biol 352:551–558

    Article  CAS  Google Scholar 

  • Kayser MM, Drolet M, Stewart JD (2005) Application of newly available bio-reducing agents to the synthesis of chiral hydroxy-β-lactams: model for aldose reductase selectivity. Tetrahedron Asymmetr 16:4004–4009

    Article  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Luthy R, Bowie UJ, Eisenberg D (1992) Assessment of protein models with three dimensional profiles. Nature 356:83–85

    Article  CAS  Google Scholar 

  • Makino Y, Inoue K, Dairi T, Itoh N (2005) Engineering of phenylacetaldehyde reductase for efficient substrate conversion in concentrated 2-propanol. Appl Environ Microbiol 71:4713–4720

    Article  CAS  Google Scholar 

  • Moore JC, Pollard DJ, Kosjek B, Devine PN (2007) Advances in the enzymatic reduction of ketones. Acc Chem Res 40:1412–1419

    Article  CAS  Google Scholar 

  • Pfruender H, Jones R, Weuster-Botz D (2006) Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol 124:182–190

    Article  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  • Schroer K, Mackfeld U, Tan IAW, Wandrey C, Heuser F, Bringer-Mayer S, Weckbecker A, Hummel W, Daußmann T, Pfaller R, Liese A, Lütz S (2007) Continuous asymmetric ketone reduction processes with recombinant Escherichia coli. J Biotechnol 132:438–444

    Article  CAS  Google Scholar 

  • Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:W382–W388

    Article  CAS  Google Scholar 

  • Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  Google Scholar 

  • Vaswani M, Linda FK, Ramesh S (2003) Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 27:85–102

    Article  CAS  Google Scholar 

  • Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  • Xu Z, Liu Y, Fang L, Jiang X, Jing K, Cen P (2006) Construction of a two-strain system for asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to (S)-4-chloro-3-hydroxybutanoate ethyl ester. Appl Micobiol Biotechnol 70:40–46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 21C Frontier Microbial Genomics and Applications Center Program, Ministry of Education, Science and Technology, Republic of Korea and the 2009 Research Fund of the Catholic University of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Kwoun Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary data 1

SDS–PAGE of expressed microbial reductases. Recombinant enzymes were expressed in E. coli BL21 (DE3) cells, and each of the soluble (S) and insoluble (P) fractions was analyzed. Arrows indicate the expected protein bands (PPT 434 kb)

Supplementary data 2

Amino acid sequence and secondary structure of YOL151W aligned with those of SSCR. Blue arrows and orange bars indicate β-strands and α-helices, respectively (PPT 246 kb)

Supplementary data 3

3D model of YOL151W (green) superimposed on the X-ray crystal structure of SSCR (magenta) (PPT 226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y.H., Choi, H.J., Kim, D. et al. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1-propanol using Saccharomyces cerevisiae reductase with high enantioselectivity. Appl Microbiol Biotechnol 87, 185–193 (2010). https://doi.org/10.1007/s00253-010-2442-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2442-5

Keywords

Navigation