Skip to main content
Log in

High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The process of ethanol fermentation has a long history in the production of alcoholic drinks, but much larger scale production of ethanol is now required to enable its use as a substituent of gasoline fuels at 3%, 10%, or 85% (referred to as E3, E10, and E85, respectively). Compared with fossil fuels, the production costs are a major issue for the production of fuel ethanol. There are a number of possible approaches to delivering cost-effective fuel ethanol production from different biomass sources, but we focus in our current report on high-temperature fermentation using a newly isolated thermotolerant strain of the yeast Kluyveromyces marxianus. We demonstrate that a 5°C increase only in the fermentation temperature can greatly affect the fuel ethanol production costs. We contend that this approach may also be applicable to the other microbial fermentations systems and propose that thermotolerant mesophilic microorganisms have considerable potential for the development of future fermentation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-fattah WR, Fadil M, Nigam P, Banat IM (2000) Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery. Biotechnol Bioeng 68:531–535

    Article  CAS  Google Scholar 

  • Adachi O, Moonmangmee D, Toyama H, Yamada M, Shinagawa E, Matsushita K (2003) New developments in oxidative fermentation. Appl Microbiol Biotechnol 60:643–653

    CAS  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  Google Scholar 

  • Anderson PJ, McNeil K, Watson K (1986) High-efficiency carbohydrate fermentation to ethanol at temperatures above 40°C by Kluyveromyces marxianus var. marxianus isolated from sugar mills. Appl Environ Microbiol 51:1314–1320

    CAS  Google Scholar 

  • Ballesteros I, Ballesteros M, Cabañas A, Carrasco J, Martín C, Negro MJ, Saez F, Saez R (1991) Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Appl Biochem Biotechnol 28–29:307–315

    Article  Google Scholar 

  • Ballesteros M, Oliva JM, Manzanares P, Negro MJ, Ballesteros I (2002) Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed-batch basis. World J Microbiol Biotechnol 18:559–561

    Article  CAS  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848

    Article  CAS  Google Scholar 

  • Bamforth C (1998) Beer: tap into the art and science of brewing. Plenum, New York

    Google Scholar 

  • Banat IM, Marchant R (1995) Characterization and potential industrial applications of 5 novel, thermotolerant, fermentative yeast strains. World J Microbiol Biotechnol 11:304–306

    Article  Google Scholar 

  • Banat IM, Nigam P, Marchant R (1992) Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C and 50°C. World J Microbiol Biotechnol 8:259–263

    Article  CAS  Google Scholar 

  • Barron N, Marchant R, McHale L, McHale AP (1995) Studies on the use of a thermotolerant strain of Kluyveromyces marxianus in simultaneous saccharification and ethanol formation from cellulose. Appl Microbiol Biotechnol 43:518–520

    Article  CAS  Google Scholar 

  • Barron N, Mulholland H, Boyle M, McHale AP (1997) Ethanol production by Kluyveromyces marxianus IMB3 during growth on straw-supplemented whiskey distillery spent wash at 45°C. Bioprocess Eng 17:383–386

    CAS  Google Scholar 

  • Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163

    Article  CAS  Google Scholar 

  • Bollók M, Réczey K, Zacchi G (2000) Simultaneous saccharification and fermentation of steam-pretreated spruce to ethanol. Appl Biochem Biotechnol 84–86:69–80

    Article  Google Scholar 

  • Boyle M, Barron N, McHale AP (1997) Simultaneous saccharification and fermentation of straw to ethanol using the thermotolerant yeast strain Kluyveromyces marxianus imb3. Biotechnol Lett 19:49–51

    Article  CAS  Google Scholar 

  • Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457

    Article  CAS  Google Scholar 

  • Cysewski GR, Wilke CR (1977) Rapid ethanol fermentations using vacuum and cell recycle. Biotechnol Bioeng 19:1125–1143

    Article  CAS  Google Scholar 

  • Cysewski GR, Wilke CR (1978) Process design and economic studies of alternative fermentation methods for the production of ethanol. Biotechnol Bioeng 20:1421–1444

    Article  CAS  Google Scholar 

  • D’Amore T, Celotto G, Russell I, Stewart GG (1989) Selection and optimization of yeast suitable for ethanol production at 40°C. Enzyme Microb Technol 11:411–416

    Article  Google Scholar 

  • Fleming M, Barron N, Marehant R, McHale L, McHale AP (1993) Studies on the growth of a thermotolerant yeast strain, Kluyveromyces marxianus IMB3, on sucrose containing media. Biotechnol Lett 15:1195–1198

    Article  CAS  Google Scholar 

  • Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569

    Article  CAS  Google Scholar 

  • Gough S, Flynn O, Hack CJ, Marchant R (1996) Fermentation of molasses using a thermotolerant yeast, Kluyveromyces marxianus IMB3: simplex optimization of media supplements. Appl Microbiol Biotechnol 46:187–190

    Article  CAS  Google Scholar 

  • Hacking AJ, Taylor IWF, Hanas CM (1984) Selection of yeast able to produce ethanol from glucose at 40°C. Appl Microbiol Biotechnol 19:361–363

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  Google Scholar 

  • Hashimoto H, Aritomi K, Minohara T, Nishizawa Y, Hoshida H, Kashiwagi S, Akada R (2006) Direct mating between diploid sake strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 69:689–696

    Article  CAS  Google Scholar 

  • Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130:114–123

    Article  CAS  Google Scholar 

  • Lark N, Xia YK, Qin CG, Gong CS, Tsao GT (1997) Production of ethanol from recycled paper sludge using cellulase and yeast, Kluyveromyces marxianus. Biomass Bioenergy 12:135–143

    Article  CAS  Google Scholar 

  • Limtong S, Srisuk N, Yongmanitchai W, Yurimoto H, Nakase T, Kato N (2005) Pichia thermomethanolica sp. nov., a novel thermotolerant, methylotrophic yeast isolated in Thailand. Int J Syst Evol Microbiol 55:2225–2229

    Article  CAS  Google Scholar 

  • Limtong S, Stringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugarcane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367–3374

    Article  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  Google Scholar 

  • Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabanas A, Ballesteros M (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105:87–100

    Article  Google Scholar 

  • Nonklang S, Abdel-Banat BMA, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3–1042. Appl Environ Microbiol 74:7514–7521

    Article  CAS  Google Scholar 

  • Rajoka MI, Khan S, Shahid R (2003) Kinetics and regulation studies of the production of β-galactosidase from Kluyveromyces marxianus grown on different substrates. Food Technol Biotechnol 41:315–320

    CAS  Google Scholar 

  • Singh D, Banat IM, Nigam P, Marchant R (1998) Industrial scale ethanol production using the thermotolerant yeast Kluyveromyces marxianus IMB3 in an Indian distillery. Biotechnol Lett 20:753–755

    Article  CAS  Google Scholar 

  • Spindler DD, Wyman CE, Grohmann K (1989) Evaluation of thermotolerant yeasts in controlled simultaneous saccharifications and fermentations of cellulose to ethanol. Biotechnol Bioeng 34:189–195

    Article  CAS  Google Scholar 

  • Sree NK, Sridhar M, Suresh K, Banat IM, Rao LV (2000) Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresour Technol 72:43–46

    Article  CAS  Google Scholar 

  • Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2008) Simultaneous saccharification and fermentation of kanlow switchgrass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnol Bioeng 101:894–902

    Article  CAS  Google Scholar 

  • Szczodrak J, Targonski Z (1988) Selection of thermotolerant yeast strains for simultaneous saccharification and fermentation of cellulose. Biotechnol Bioeng 31:300–303

    Article  CAS  Google Scholar 

  • Taylor F, Kurantz MJ, Goldberg N, Craig JC Jr (1995) Continuous fermentation and stripping of ethanol. Biotechnol Prog 11:693–698

    Article  CAS  Google Scholar 

  • Wiegel J (1980) Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experientia 36:1434–1446

    Article  CAS  Google Scholar 

  • Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117

    Article  CAS  Google Scholar 

  • Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol. doi:10.1016/j.jbiotec.2009.05.001

    Google Scholar 

Download references

Acknowledgments

We are greatly indebted to Yutaka Mitani, Sapporo Breweries Ltd. for helpful discussions. We also thank Yuko Saito, Akiko Nishida, and Yukie Misumi for their technical assistance. The studies listed in this review have been supported by grants from the Program for Promotion of Basic Research Activities for Innovative Bioscience (PROBRAIN), the New Energy and Industrial Technology Development Organization (NEDO), and the Scientific Cooperation Program between the Japan Society for the Promotion of Science (JSPS) and the National Research Council of Thailand (NRCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinji Akada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Banat, B.M.A., Hoshida, H., Ano, A. et al. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?. Appl Microbiol Biotechnol 85, 861–867 (2010). https://doi.org/10.1007/s00253-009-2248-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2248-5

Keywords

Navigation