Skip to main content

Advertisement

Log in

Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

There is a growing demand for silver-based biocides, including both ionic silver forms and metallic nanosilver. The use of metallic nanosilver, typically chemically produced, faces challenges including particle agglomeration, high costs, and upscaling difficulties . Additionally, there exists a need for the development of a more eco-friendly production of nanosilver. In this study, Gram-positive and Gram-negative bacteria were utilized in the non-enzymatic production of silver nanoparticles via the interaction of silver ions and organic compounds present on the bacterial cell. Only lactic acid bacteria, Lactobacillus spp., Pediococcus pentosaceus, Enterococcus faecium, and Lactococcus garvieae, were able to reduce silver. The nanoparticles of the five best producing Lactobacillus spp. were examined more into detail with transmission electron microscopy. Particle localization inside the cell, the mean particle size, and size distribution were species dependent, with Lactobacillus fermentum having the smallest mean particle size of 11.2 nm, the most narrow size distribution, and most nanoparticles associated with the outside of the cells. Furthermore, influence of pH on the reduction process was investigated. With increasing pH, silver recovery increased as well as the reduction rate as indicated by UV–VIS analyses. This study demonstrated that Lactobacillus spp. can be used for a rapid and efficient production of silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B-Biointerfaces 28:313–318

    Article  CAS  Google Scholar 

  • Aslim B, Beyatli Y, Yuksekdag ZN (2006) Productions and monomer compositions of exopolysaccharides by Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus strains isolated from traditional home-made yoghurts and raw milk. Int J Food Sci Technol 41:973–979

    Article  CAS  Google Scholar 

  • Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33(2):139–148

    Article  Google Scholar 

  • Boonaert CJP, Rouxhet PG (2000) Surface of lactic acid bacteria: relationships between chemical composition and physicochemical properties. Appl Environ Microbiol 66:2548–2554

    Article  CAS  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2283 with silver nitrate. Lett Appl Microbiol 37:105–108

    Article  CAS  Google Scholar 

  • Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P (1999) The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek 76:159–184

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD, Alves OL, Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8

    Article  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  • Fu MX, Li QB, Sun DH, Lu YH, He N, Deng X, Wang HX, Huang JL (2006) Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin J Chem Eng 14:114–117

    Article  CAS  Google Scholar 

  • Fuller SB, Wilhelm EJ, Jacobson JA (2002) Ink-jet printed nanoparticle microelectromechanical systems. J Microelectromech Syst 11:54–60

    Article  Google Scholar 

  • Jolly L, Vincent SJF, Duboc P, Nesser JR (2002) Exploiting exopolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek 82:367–374

    Article  CAS  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloid Surf B-Biointerfaces 65:150–153

    Article  CAS  Google Scholar 

  • Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  Google Scholar 

  • Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484

    CAS  PubMed  Google Scholar 

  • Klasen HJ (2000a) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26:117–130

    Article  CAS  Google Scholar 

  • Klasen HJ (2000b) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26:131–138

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614

    Article  CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Ledwith DM, Whelan AM, Kelly JM (2007) A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J Mater Chem 17:2459–2464

    Article  CAS  Google Scholar 

  • Lin ZY, Zhou CH, Wu JM, Zhou JZ, Wang L (2005) A further insight into the mechanism of Ag + biosorption by Lactobacillus sp strain A09. Spectrochim Acta Part A-Mol Biomol Spectrosc 61:1195–1200

    Article  Google Scholar 

  • Lu L, Sun RWY, Chen R, Hui CK, Ho CM, Luk JM, Lau GKK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262

    CAS  PubMed  Google Scholar 

  • Mast J, Nanbru C, van den Berg T, Meulemans G (2005) Ultrastructural changes of the tracheal epithelium after vaccination of day-old chickens with the La Sota strain of Newcastle disease virus. Vet Pathol 42:559–565

    Article  CAS  Google Scholar 

  • Medina F, Chimentao RJ, Kirm I, Rodriguez X, Cesteros Y, Salagre P, Sueiras JE, Fierro JLG (2005) Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles. Appl Surf Sci 252:793–800

    Article  Google Scholar 

  • Merroun M, Rossberg A, Hennig C, Scheinost AC, Selenska-Pobell S (2007) Spectroscopic characterization of gold nanoparticles formed by cells and S-layer protein of Bacillus sphaericus JG-A12. Mater Sci Eng C-Biomim Supramol Syst 27:188–192

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the lycelial matrix: a novel biological approach to nanoparticle synthesis. Nanoletters 1:515–519

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  CAS  Google Scholar 

  • Rao CNR, Cheetham AK (2001) Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11:2887–2894

    Article  CAS  Google Scholar 

  • Sadowski Z, Maliszewska I, Polowczyk I, Kozlecki T, Grochowalska B (2008) Biosynthesis of colloidal-silver particles using microorganisms. Pol J Chem 82:377–382

    CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  • Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634

    Article  CAS  Google Scholar 

  • Tavakoli A, Sohrabi M, Kargari A (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61:151–170

    Article  CAS  Google Scholar 

  • Tilaki RM, Zad AI, Mahdavi SM (2006) Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl Phys A-Mater Sci Process 84:215–219

    Article  CAS  Google Scholar 

  • van Hullebusch E, Zandvoort M, Lens P (2003) Metal immobilisation by biofilms: mechanisms and analytical tools. Rev Environ Sci Biotechnol 2:9–33

    Article  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Zhang HR, Li QB, Lu YH, Sun DH, Lin XP, Deng X, He N, Zheng SZ (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80:285–290

    Article  CAS  Google Scholar 

  • Zhang HR, Li QB, Wang HX, Sun DH, Lu YH, He N (2007) Accumulation of silver(I) ion and diamine silver complex by Aeromonas SH10 biomass. Appl Biochem Biotechnol 143:54–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the project grant 71333 of IWT, the Institute for the Promotion of Innovation by Science and Technology in Flanders, and by the “Industrieel Onderzoeksfonds” of Ghent University (IOF07/VAL/006). We thank Niels D’ Haese and Greet Van De Velde for their assistance in the lab; Kim Verbeken for using the AAS; Olivier Janssens of the department of Solid State Sciences at Ghent University for the XRD analyses; Bart Declercq for his help with the statistics; and Brian Laird, Pieter Van De Caveye, Pieter Verhagen, and Tom Hennebel for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Boon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement I

The particle size distribution curves showing the frequency (counts) and cumulative frequency (%) for L. farciminis, L. fermentum, L. plantarum LMG 24832, L. plantarum LMG 24830, and L. rhamnosus (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sintubin, L., De Windt, W., Dick, J. et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84, 741–749 (2009). https://doi.org/10.1007/s00253-009-2032-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2032-6

Keywords

Navigation