Skip to main content
Log in

A putative azoreductase gene is involved in the Shewanella oneidensis response to heavy metal stress

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Shewanella oneidensis MR-1 gene SO3585, which is annotated as a putative flavin mononucleotide-dependent azoreductase, shares 28% sequence identity with Bacillus subtilis azoreductase and Pseudomonas putida ChrR, a soluble flavoprotein exhibiting chromate reductase activity. Reverse transcription polymerase chain reaction demonstrated that the SO3585 gene is co-transcribed with two downstream open reading frames: SO3586 (a glyoxalase family protein) and SO3587 (a predicted membrane-associated hypothetical protein). The transcriptional start site of the so3585 transcript was localized using 5′ rapid amplification of complementary DNA ends analysis. To investigate the cellular function of SO3585, an in-frame deletion of the so3585 locus was generated in MR-1, and the phenotype of the resulting mutant was characterized. The so3585 deletion mutant was comparable to the parental strain in its ability to decolorize two sulfonated azo dyes (Orange II, Direct Blue 15) under aerobic conditions. By contrast, growth of the so3585 deletion mutant was sensitive to different exogenous transition heavy metals [Cr(VI), Cd(II), Cu(II), and Zn(II)], while the most severe growth deficiencies were observed in the presence of Cd(II) and Cu(II). In addition, the rate of extracellular chromate disappearance by the deletion strain was initially impaired, although both the so3585 mutant and MR-1 wild type reduced Cr(VI) within the same time period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antelmann H, Hecker M, Zuber P (2008) Proteomic signatures uncover thiol-specific electrophile resistance mechanisms in Bacillus subtilis. Expert Rev Proteomics 5:77–90

    CAS  PubMed  Google Scholar 

  • Beliaev AS, Klingeman DM, Klappenbach JA, Wu L, Romine MF, Tiedje JM, Nealson KH, Fredrickson JK, Zhou J (2005) Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol 187:7138–7145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bencheikh-Latmani R, Williams SM, Haucke L, Criddle CS, Wu L, Zhou J, Tebo BM (2005) Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) reduction. Appl Environ Microbiol 71:7453–7460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Booth IR, Ferguson GP, Miller S, Li C, Gunasekera B, Kinghorn S (2003) Bacterial production of methylglyoxal: a survival strategy or death by misadventure? Biochem Soc Trans 31:1406–1408

    CAS  PubMed  Google Scholar 

  • Brown SD, Thompson MR, VerBerkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, Thompson DK (2006a) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5:1054–1071

    CAS  PubMed  Google Scholar 

  • Brown SD, Martin M, Deshpande S, Seal S, Huang K, Alm E, Yang Y, Wu L, Yan T, Liu X, Arkin A, Chourey K, Zhou J, Thompson DK (2006b) Cellular response of Shewanella oneidensis to strontium stress. Appl Environ Microbiol 72:890–900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carpentier W, Sandra K, De Smet I, Brige A, De Smet L, Van Beeumen J (2003) Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol 69:3636–3639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    CAS  PubMed  Google Scholar 

  • Chourey K, Wei W, Wan X-F, Thompson DK (2008) Transcriptome analysis reveals response regulator SO2426-mediated gene expression in Shewanella oneidensis MR-1 under chromate challenge. BMC Genomics 9:395

    PubMed  PubMed Central  Google Scholar 

  • Chung KT, Stevens SE Jr (1993) Degradation of azo dyes by environmental microorganisms and helminthes. Environ Toxicol Chem 12:2121–2132

    CAS  Google Scholar 

  • Denef VJ, Klappenbach JA, Patrauchan MA, Florizone C, Rodrigues JLM, Tsoi TV, Verstraete W, Eltis LD, Tiedje JM (2006) Genetic and genomic insights into the role of benzoate–catabolic pathway redundancy in Burkholderia xenovorans LB400. Appl Environ Microbiol 72:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Estrem ST, Gaal T, Ross W, Gourse RL (1998) Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci U S A 95:9761–9766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Google Scholar 

  • Ferguson GP, Booth IR (1998) Importance of glutathione for growth and survival of Escherichia coli cells: detoxification of methylglyoxal and maintenance of intracellular K+. J Bacteriol 180:4314–4318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson GP, Tötemeyer S, MacLean MJ, Booth IR (1998) Methylglyoxal production in bacteria: suicide or survival? Arch Microbiol 170:209–219

    CAS  PubMed  Google Scholar 

  • Figueira E, Lima IG, Pereira SIA (2005) Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 51:7–14

    CAS  PubMed  Google Scholar 

  • Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123

    CAS  PubMed  Google Scholar 

  • Helbig K, Bleuel C, Krauss GJ, Nies DH (2008) Glutathione and transition-metal homeostasis in Escherichia coli. J Bacteriol 190:5431–5438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue Y, Kimura A (1995) Methylglyoxal and regulation of its metabolism in microorganisms. Adv Microb Physiol 37:177–227

    CAS  PubMed  Google Scholar 

  • James BR (1996) The challenge of remediating chromium-contaminated soil. Environ Sci Technol 30:A248–A251

    Google Scholar 

  • Kumar S, Tamura K, Nei M (1994) MEGA: Molecular evolutionary genetics analysis software for microcomputers. Comput Appl Biosci 10:189–191

    CAS  PubMed  Google Scholar 

  • Langard S (1980) Chromium. In: Waldron HA (ed) Metals in the environment. Academy Press, New York, pp 111–132

    Google Scholar 

  • Leelakriangsak M, Huyen NTT, Töwe S, van Duy N, Becher D, Hecker M, Antelmann H, Zuber P (2008) Regulation of quinine detoxification by the thiol stress sensing DUF24/MarR-like repressor, YodB in Bacillus subtilis. Mol Microbiol 67:1108–1124

    CAS  PubMed  Google Scholar 

  • Lima AIG, Corticeiro SC, Figueira E (2006) Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme Microb Technol 39:763–769

    CAS  Google Scholar 

  • Liu CX, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI) and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80:637–649

    CAS  PubMed  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    CAS  PubMed  Google Scholar 

  • Lovely DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–3271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marx CJ, Lidstrom ME (2002) Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. BioTechniques 33:1062–1067

    CAS  PubMed  Google Scholar 

  • Middleton SS, Bencheikh-Latmani R, Mackey MR, Ellisman MH, Tebo BM, Criddle CS (2003) Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol Bioeng 83:627–637

    CAS  PubMed  Google Scholar 

  • Mitaku S, Hirokawa T, Tsuji T (2002) Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane–water interfaces. Bioinformatics 18:608–616

    CAS  PubMed  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321

    CAS  PubMed  Google Scholar 

  • Myers CR, Nealson KH (1990) Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. J Bacteriol 172:6232–6238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nies DH (1992) Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27:17–28

    CAS  PubMed  Google Scholar 

  • Nies DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    CAS  PubMed  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross W, Aiyar SE, Solomon J, Gourse RL (1998) Escherichia coli promoters with UP elements of different strengths: modular structure of bacterial promoters. J Bacteriol 180:5375–5383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schwarz R, Dayhoff M (1979) Matrices for detecting distant relationships. In: Dayhoff M (ed) Atlas of protein sequences. National Biomedical Research Foundation, Washington DC, pp 353–358

    Google Scholar 

  • Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463

    CAS  PubMed  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    CAS  PubMed  Google Scholar 

  • Thompson MR, VerBerkmoes NC, Chourey K, Shah M, Thompson DK, Hettich RL (2007) Dosage-dependent proteome response of Shewanella oneidensis MR-1 to acute chromate challenge. J Proteome Res 6:1745–1757

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toshihiko O, Shibata T, Sato R, Hiroaki O, Kinoshita S, Thuoc TL, Taguchi S (2007) An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization. Appl Microbiol Biotechnol 75:377–386

    Google Scholar 

  • Töwe S, Leelakriangsak M, Kobayashi K, Duy NV, Hecker M, Zuber P, Antelmann H (2007) The MarR-type repressor MhqR (YkvE) regulates multiple dioxygenases/glyoxalases and an azoreductase which confer resistance to 2-methylhydroquinone and catechol in Bacillus subtilis. Mol Microbiol 66:40–54

    PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Steven D. Brown for the creation of the so3585 deletion mutant and Xiu-Feng Wan for hydropathy profile analyses. This research was supported in part by the Office of Science (BER), United States Department of Energy, Grant No. DE-FG02–06ER64163, to DKT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea K. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mugerfeld, I., Law, B.A., Wickham, G.S. et al. A putative azoreductase gene is involved in the Shewanella oneidensis response to heavy metal stress. Appl Microbiol Biotechnol 82, 1131–1141 (2009). https://doi.org/10.1007/s00253-009-1911-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1911-1

Keywords

Navigation