Skip to main content
Log in

Antagonistic effect of divalent cations Ca2+ and Mg2+ on the morphological development of Streptomyces hygroscopicus var. geldanus

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Supplementation of the divalent cations calcium and magnesium to submerged cultures of Streptomyces hygroscopicus var. geldanus greatly influenced morphological development and secondary metabolite synthesis. The disparate response could be explained in terms of the differential effects of Ca2+ and Mg2+ ions on cell surface hydrophobicity. Cultures supplemented with calcium ions were found to be hydrophobic, which resulted in cell concentration-dependent aggregation. In contrast, those grown in a magnesium-rich medium were found to be hydrophilic with the organism growing as freely dispersed filaments that synthesised geldanamycin at an optimal rate in comparison to hydrophobic pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas A, Edwards C (1990) Effects of metals on Streptomyces coelicolor growth and actinorhodin production. Appl Environ Microbiol 56:675–680

    Article  CAS  Google Scholar 

  • Archibald A (1974) The structure, biosynthesis and function of teichoic acids. Adv Microb Physiol 11:53–95

    Article  Google Scholar 

  • Basak K, Majumdar S (1975) Mineral nutrition of Streptomyces kanamyceticus for kanamycin formation. Antimicrob Agents Chemother 8:391–395

    Article  CAS  Google Scholar 

  • Beveridge T (1989) Metal ions and bacteria. In: Beveridge T, Doyle R (eds) Metal ions and bacteria. Wiley, New York

    Google Scholar 

  • Braun S, Vecht-Lifshitz S (1991) Mycelial morphology and metabolite production. Trends Biotechnol 9:63–68

    Article  Google Scholar 

  • Byrne K, Greenstein M (1986) Nitrogen repression of gilvocarcin V production in Streptomyces arenae 2064. J Antibiot (Tokyo) 39:594–600

    Article  CAS  Google Scholar 

  • Castellanos T, Ascencio F, Bashan Y (1997) Cell surface hydrophobicity and cell surface charge of Azospirillium spp. FEMS Microbiol Ecol 24:159–172

    Article  CAS  Google Scholar 

  • Cheng Y, Hauck L, Demain A (1995) Phosphate, ammonium, magnesium and iron nutrition of Streptomyces hygroscopicus with respect to rapamycin biosynthesis. J Ind Microbiol 14:424–427

    Article  CAS  Google Scholar 

  • Domingues L, Vicente A, Lima N, Teixeira J (2000) Applications of yeast flocculation in biotechnological processes. Biotechnol Bioprocess Eng 5:288–305

    Article  CAS  Google Scholar 

  • Dynesen J, Nielsen J (2003) Surface hydrophobicity of Aspergillus nidulans conidiospores and its role in pellet formation. Biotechnol Prog 19:1049–1052

    Article  CAS  Google Scholar 

  • Frausto da Silva J, Williams R (2001) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, Oxford

    Google Scholar 

  • Kelstrup J, Funder-Nielsen T (1972) Molecular interactions between the extracellular polysaccharides of Streptococcus mutans. Arch Oral Biol 17:1659–1670

    Article  CAS  Google Scholar 

  • Lu S, Ding Y, Guo J (1998) Kinetics of fine particle aggregation in turbulence. Adv Colloid Interface Sci 78:197–235

    Article  CAS  Google Scholar 

  • Majeed M, Gustafsson M, Kihlstrom E, Stendahl O (1993) Roles of Ca2+ and F-actin in intracellular aggregation of Chlamydia trachomatis in eukaryotic cells. Infect Immun 61:1406–1414

    Article  CAS  Google Scholar 

  • Mill P (1964) The nature of the interactions between flocculent cells in the flocculation of Saccharomyces cerevisiae. J Gen Microbiol 35:61–68

    Article  CAS  Google Scholar 

  • Neckers L, Schulte T, Mimnaugh E (1999) Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs 17:361–373

    Article  CAS  Google Scholar 

  • Nielsen J (1996) Modelling the morphology of filamentous microorganisms. Trends Biotechnol 14:438–443

    Article  CAS  Google Scholar 

  • O’Cleirigh C, Walsh P, O’Shea D (2003) Morphological quantification of pellets in Streptomyces hygroscopicus var. geldanus fermentation broths using a flatbed scanner. Biotechnol Lett 25:1677–1683

    Article  Google Scholar 

  • Okba A, Ogata T, Matsubara H, Matsuo S, Doi K, Ogata S (1998) Effects of bacitracin and excess Mg2+ on submerged mycelial growth of Streptomyces azureus. J Ferment Bioeng 86:28–33

    Article  CAS  Google Scholar 

  • Omura S, Tanaka Y, Kitao C, Tanaka H, Iwai Y (1980) Stimulation of leucomycin production by magnesium phosphate and its relevance to nitrogen catabolite regulation. Antimicrob Agents Chemother 18:691–695

    Article  CAS  Google Scholar 

  • Onoda T, Enokizono J, Kaya H, Oshima A, Freestone P, Norris V (2000) Effects of calcium and calcium chelators on growth and morphology of Escherichia coli L-form NC-7. J Bacteriol 182:1419–1422

    Article  CAS  Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    Article  CAS  Google Scholar 

  • Papagianni M, Mattey M (2006) Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology. Microbial Cell Factories 5:3

    Article  CAS  Google Scholar 

  • Pembrey R, Marshall K, Schneider R (1999) Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties? Appl Environ Microbiol 65:2877–2894

    Article  CAS  Google Scholar 

  • Rose R (2000) The role of calcium in oral streptococcal aggregation and the implications for biofilm formation and retention. Biochim Biophys Acta 1475:76–82

    Article  CAS  Google Scholar 

  • Roubos J, Krabben P, De Laat W, Babuska R, Heijnen J (2002) Clavulanic acid degradation in Streptomyces clavuligerus fed-batch cultivations. Biotechnol Prog 18:451–457

    Article  CAS  Google Scholar 

  • Ryoo D, Choi C (1999) Surface thermodynamics of pellet formation in Aspergillus niger. Biotechnol Lett 21:97–100

    Article  CAS  Google Scholar 

  • Singleton D, Masouka J, Hazen K (2001) Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity. J Bacteriol 183:3582–3588

    Article  CAS  Google Scholar 

  • Smit G, Kijne J, Lugtenberg B (1989) Roles of flagella, lipopolysaccharide, and a Ca2+-dependent cell surface protein in attachment of Rhizobium leguminosarum biovar viciae to pea root hair tips. J Bacteriol 171:569–572

    Article  CAS  Google Scholar 

  • Smit G, Straver M, Lugtenberg B, Kijne J (1992) Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant. Appl Environ Microbiol 58:3709–3714

    Article  CAS  Google Scholar 

  • Thaveesri J, Daffonchio D, Liessens B, Vandermereen P, Verstraete W (1995) Granulation and sludge bed stability in upflow anaerobic sludge bed reactors in relation to surface thermodynamics. Appl Environ Microbiol 61:3681–3686

    Article  CAS  Google Scholar 

  • Thiebault F, Coulon J (2005) Influence of carbon source and surface hydrophobicity on the aggregation of the yeast Kluyveromyces bulgaricus. Can J Microbiol 51:91–94

    Article  CAS  Google Scholar 

  • Vadillo-Rodriguez V, Busscher H, Norde W, De Vries J, Van der Mei H (2004) Dynamic cell surface hydrophobicity of Lactobacillus strains with and without surface layer proteins. J Bacteriol 186:6647–6650

    Article  CAS  Google Scholar 

  • Vecht-Lifshitz S, Magdassi S, Braun S (1989) Effects of surface active agents on pellet formation in submerged fermentations of Streptomyces tendae. J Dispers Sci Technol 10:265–275

    Article  CAS  Google Scholar 

  • Vecht-Lifshitz S, Magdassi S, Braun S (1990) Pellet formation and cellular aggregation in Streptomyces tendae. Biotechnol Bioeng 35:890–896

    Article  CAS  Google Scholar 

  • Whitaker A (1992) Actinomycetes in submerged culture. Appl Biochem Biotechnol 32:23–35

    Article  CAS  Google Scholar 

  • Yonekawa T, Ohnishi Y, Horinouchi S (2005) A calmodulin-like protein in the bacterial genus Streptomyces. FEMS Microbiol Lett 244:315–321

    Article  CAS  Google Scholar 

  • Young M, Kempe L, Bader F (1985) Effects of phosphate, glucose, and ammonium on cell-growth and lincomycin production by Streptomyces lincolnensis in chemically defined media. Biotechnol Bioeng 27:327–333

    Article  CAS  Google Scholar 

  • Yousef F, Espinosa-Urgel M (2007) In silico analysis of large microbial surface proteins. Res Microbiol 158(6):545–550

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the Irish Research Council for Science, Engineering and Technology (IRCSET) for the funding provided under the Embark Postgraduate Research Scholarship Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. O’Shea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobson, L.F., O’Shea, D.G. Antagonistic effect of divalent cations Ca2+ and Mg2+ on the morphological development of Streptomyces hygroscopicus var. geldanus . Appl Microbiol Biotechnol 81, 119–126 (2008). https://doi.org/10.1007/s00253-008-1627-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1627-7

Keywords

Navigation