Skip to main content

Advertisement

Log in

The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold–silver mines in the Republic of Korea

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The isolates were identified on the basis of ars genotype characteristics as well as arsenic oxidation/reduction analysis based on the molecular detection characterization. Diversity, pH range (4.0 to 7.0), location, and ars features were assessed for four arsenic-contaminated pond sites and six arsenic tailings located in the Duck-um mine and Myoung-bong mine areas. The presence of ars genes in the genomes of each bacterial strain was evaluated using polymerase chain reaction. Batch experiment results showed that Pseudomonas putida strains OS-3 and -18 completely oxidized 1 mM of arsenite(III) to arsenate(V) within 35–40 h. In contrast, two arsenate-reducing bacteria isolated from mines, P. putida RS-4 and RS-5, were capable of growing aerobically in growth medium supplemented with up to 66.7 mM arsenate(V), which are significantly higher concentration than those tolerated by other arsenic-resistant bacteria. These results suggest that newly isolated indigenous arsenic-resistant bacteria may provide a better understanding of the molecular geomicrobiology and may be applied to the bioremediation of arsenic-contaminated mines in Korea. Ecologically, the redox potential plays an important role in arsenic toxicity and mobility in As-contaminated mine areas, as it facilitates the biogeochemical cycling activity of Pseudomonas sp. groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmann D, Roberts AL, Krumholz LR, Morel FMM (1994) Microbe grows by reducing arsenic. Nature 371:750

    Article  CAS  PubMed  Google Scholar 

  • Anderson CR, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol 48:341–347

    Article  CAS  PubMed  Google Scholar 

  • Bruhn DF, Li J, Silver S, Roberto F, Rosen BP (1996) The arsenical resistance operon of IncN plasmid R46. FEMS Microbiolol Lett 139:149–153

    Article  CAS  Google Scholar 

  • Bruneel O, Personne JC, Casiot C, Leblanc M, Elbaz-Poulicht F, Mahler BJ, Le Fléche A, Grimont PAD (2003) Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulés, France). J Appl Microbiol 95:492–499

    Article  CAS  PubMed  Google Scholar 

  • Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes C, Ji G, Ramirez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15:355–367

    Article  CAS  PubMed  Google Scholar 

  • Chen CM, Misra TK, Silver S, Rosen BP (1986) Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem 261:15030–15038

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Rosen BP (1997) Metalloregulatory properties of the ArsD repressor. J Biol Chem 272:14257–142620

    Article  CAS  PubMed  Google Scholar 

  • Danielle RE, Phelps CR, Young LY (2006) Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8:899–908

    Article  CAS  Google Scholar 

  • Diorio C, Cai J, Marmor J, Shinder R, DuBow MS (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in Gram-negative bacteria. J Bacteriol 177:2050–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett M-C, Bonnefy V (2008) Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol 10: 228–237

    CAS  PubMed  Google Scholar 

  • Inskeep WP, Maser RE, Hamamura N, Warelow TP, Ward SA, Santini JM (2007) Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol 9:934–943

    Article  CAS  PubMed  Google Scholar 

  • Jackson CR, Dugas SL, Harrison KG (2005) Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol Biochem 37:2319–2322

    Article  CAS  Google Scholar 

  • Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3:532–542

    Article  CAS  PubMed  Google Scholar 

  • Ji G, Silver S (1992a) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pl258. J Bacteriol 174:3684–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji G, Silver S (1992b) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pl258. Proc Natl Acad Sci U S A 89:9474–9478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez JI, Miñabres B, Luis J, Díaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841

    Article  PubMed  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from groundwaters. Water Res 38:17–26

    Article  CAS  PubMed  Google Scholar 

  • Kuroda M, Dey S, Sander OI, Rosen BP (1997) Alternate energy coupling of ArsB the membrane subunit of the Ars anion-translocating ATPase. J Biol Chem 272:326–331

    Article  CAS  PubMed  Google Scholar 

  • Le XC, Yalcin S, Ma M (2000) Speciation of submicrogram per liter levels of arsenic in water: on site species separation integrated with sample collection. Environ Sci Technol 34:2342–2347

    Article  CAS  Google Scholar 

  • Lopez-Maury L, Florencio FJ, Reyes JC (2003) Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 185:5363–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macy JM, Nunan K, Hagen KD, Dixon DR, Harbour PJ, Cahill M, Sly LI (1996) Chrysiogenes arsenatis gen. nov. sp. nov., a new arsenate respiring bacterium isolated from gold mine wastewater. Int J Syst Evol Microbiol 46:1153–1157

    CAS  Google Scholar 

  • Mandl M, Matulová, Dočekalová H (1992) Migration of arsenic(III) during bacterial oxidation of arsenopyrite in chalcopyrite concentrate by Thiobacillus ferrooxidans. Appl Microbiol Biotechnol 38:429–431

    Article  CAS  Google Scholar 

  • Malasarn D, Saltkov CW, Campbell KM, Santini JM, Hering JG, Newman DK (2004) arrA is a reliable marker for As(V) respiration. Science 306:455

    Article  CAS  PubMed  Google Scholar 

  • Masscheleyn PH, DeLaune RD, Patrick WH Jr (1991) Speciation and solubility of arsenic and selenium in sediment suspension under controlled redox and pH conditions. J Environ Qual 20:522–527 (peer reviewed)

    Article  CAS  Google Scholar 

  • McLean JS, Beveridge TJ, Phipps D (2000) Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site. Environ Microbiol 1:89–98

    Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  CAS  PubMed  Google Scholar 

  • Neyt C, Iriarte M, Thi VH, Cornelis GR (1997) Virulence and arsenic resistance in Yersiniae. J Bacteriol 179:612–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol Biotechnol 14:186–199

    CAS  Google Scholar 

  • Oremland RS, Stolz JF, Hollibaugh JT (2004) The microbial arsenic cycle in MonoLake, California. FEMS Microbiol Ecol 48:15–27

    Article  CAS  PubMed  Google Scholar 

  • Owolabi JB, Rosen BP (1990) Differential mRNA stability controls relative gene expression within the plasmid-encoded arsenical resistance operon. J Bacteriol 172:2367–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel PC, Goulhen F, Boothman C, Gault AG, Charnock JM, Kalia K, Lloyd JR (2007) Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Arch Microbiol 187:171–183

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saltikov CW, Olson BH (2002) Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl Environ Microbiol 68:280–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Sping Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithotrophic arsenite-oxidizing bacterium isolated from a goldmine: phylogenetic, physiological and preliminary biochemical studies. Appl Environl Microbiol 66:92–97

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–195

    Article  CAS  Google Scholar 

  • Stainier RT, Palleronia NJ, Duodoroff M (1966) The aerobic Pseudomonas: a taxonomic study. J Gen Microbiol 43:159–271

    Article  Google Scholar 

  • Stoltz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627

    Article  Google Scholar 

  • Sun Y, Polishchuk EA, Radoja U, Cullen WR (2004) Identification and quantification of arsC genes in environmental samples by using realtime PCR. J Microbiol Method 58:335–349

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turpeinen R, Kairesalo T, Häggblom NM (2004) Microbial community structure and activity in arsenic, chromium, and copper-contaminated soils. FEMS Microbiol Ecol 47:39–50

    Article  CAS  PubMed  Google Scholar 

  • Turpeinen R, Pantsar-Kamo M, Kariresale T (2002) Role of microbes in controlling the speciation arsenic and production of arsines in contaminated soils. Sci Total Environ 285:133–145

    Article  CAS  PubMed  Google Scholar 

  • Ure AM (1995) Heavy metals in soils. Chapman and Hall, Glasgow, pp 5–68

    Google Scholar 

  • Wu J, Tisa LS, Ronsen BP (1992) Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase. J Biol Chem 267:12570–12576

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program funded by the Ministry of Science and Technology (no. M10300000298-06J0000-29810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Woong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, JS., Kim, YH. & Kim, KW. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold–silver mines in the Republic of Korea. Appl Microbiol Biotechnol 80, 155–165 (2008). https://doi.org/10.1007/s00253-008-1524-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1524-0

Keywords

Navigation