Skip to main content
Log in

Microbial production of R-3-hydroxybutyric acid by recombinant E. coli harboring genes of phbA, phbB, and tesB

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Production of R-3-hydroxybutyric acid (3HB) was observed when genes of β-ketothiolase (PhbA), acetoacetyl CoA reductase (PhbB), and thioesterase II (TesB) were jointly expressed in Escherichia coli. TesB, generally regarded as a medium chain length acyl CoA thioesterase, was found, for the first time, to play an important role for transforming short chain length 3-hydroxybutyrate-CoA to its free fatty acid, namely, 3HB. E. coli BW25113 (pSPB01) harboring phbA, phbB, and tesB genes produced approximately 4 g/l 3HB in shake flask culture within 24 h with glucose used as a carbon source. Under anaerobic growth conditions, 3HB production was found to be more effective, achieving 0.47 g 3HB/g glucose compared with only 0.32 g 3HB/g glucose obtained from aerobic process. When growth was conducted on sodium gluconate, 6 g/l 3HB was obtained. In a 24-h fed-batch growth process conducted in a 6-l fermentor containing 3 l glucose mineral medium, 12 g/l 3HB was produced from 17 g/l cell dry weight (CDW). This was the highest 3HB productivity achieved by a one-stage fermentation process for 3HB production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MA (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Chen GQ, Wu Q (2005) Microbial production and applications of chiral hydroxyalkanoates. Appl Microbiol Biotechnol 67:592–599

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Wu Q, Yang F, Xu M, Leski M, Chen GQ (2005) Influence of dl-beta-hydroxybutyric acid on cell proliferation and calcium influx. Biomacromolecules 6:593–597

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Chen GQ, Leski M, Zou B, Wang Y, Wu Q (2006) The effect of d,l-beta-hydroxybutyric acid on cell death and proliferation in L929 cells. Biomaterials 27:3758–3765

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Roo G, Kellerhals MB, Ren Q, Witholt B, Kessler B (2002) Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by Pseudomonas. Biotechnol Bioeng 77:717–722

    Article  PubMed  Google Scholar 

  • Fishman A, Eroshov M, Dee-Noor SS, van Mil J, Cogan U, Effenberger R (2001) A two-step enzymatic resolution process for large scale production of (S)- and (R)-ethyl-3-hydrobutyrate. Biotechnol Bioeng 74:256–263

    Article  CAS  PubMed  Google Scholar 

  • Gao HJ, Wu Q, Chen GQ (2002) Enhanced production of d-(3)-3-hydroxybutyric acid by recombinant Escherichia coli. FEMS Microbiol Lett 213:59–65

    CAS  PubMed  Google Scholar 

  • Jaipuri FA, Jofre MF, Schwarz KA, Pohl NL (2004) Microwave-assisted cleavage of Weinreb amide for carboxylate protection in the synthesis of a (R)-3-hydroxyalkanoic acid. Tetrahedron Lett 45:4149–4152

    Article  CAS  Google Scholar 

  • Kanesawa Y, Tanahashi N, Doi Y (1994) Enzymatic degradation of microbial poly(3-hydroxyalkanoates). Polym Degrad Stab 45:179–185

    Article  CAS  Google Scholar 

  • Klinke S, Ren Q, Witholt B, Kessler B (1999) Production of medium-chain-length poly(3-hydroxyalkanoates) from gluconate by recombinant Escherichia coli. Appl Environ Microbiol 65(2):540–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson, GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee Y (2003) Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)-(–)-hydroxycarboxylic acids. Appl Environ Microbiol 69:3421–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Lee Y, Wang F (1999a) Chiral compounds from bacterial polyesters: sugar to plastics to fine chemicals. Biotechnol Bioeng 65:363–368

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Wang F, Lee Y (1999b) A method for producing hydroxycarboxylic acids by auto-degradation of polyhydroxyalkanoates. Patent WO 9929889A1

  • Lee Y, Park SH, Limb IT, Hanb K, Lee SY (2000) Preparation of alkyl (R)-(2)-3-hydroxybutyrate by acidic alcoholysis of poly-(R)-(2)-3-hydroxybutyrate. Enzyme Microb Technol 27:33–36

    Article  CAS  PubMed  Google Scholar 

  • Liu SJ, Steinbüchel A (2000a) A novel genetically engineered pathway for synthesis of poly(hydroxyalkanoic acids) in Escherichia coli. Appl Environ Microbiol 66:739–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SJ, Steinbüchel A (2000b) Exploitation of butyrate kinase and phosphotransbutyrylase from Clostridium acetobutylicum for the in vitro biosynthesis of poly(hydroxyalkanoic acid). Appl Microbiol Biotechnol 53:545–552

    Article  CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GM (1999) Metabolic engineering of poly(3-hydroxyakanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magnuson K, Jackowski S, Rock CO, Cronan JE (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev 57:522–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massieu L, Haces ML, Montiel T, Hernandez-Fonseca K (2003) Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 120:365–378

    Article  CAS  PubMed  Google Scholar 

  • Naggert J, Narasimhan ML, DeVeaux L, Cho H, Randhawa ZI, Cronan JE, Green BN, Smith S (1991) Cloning, sequencing, and characterization of Escherichia coli thioesterase II. J Biol Chem 266:11044–11050

    CAS  PubMed  Google Scholar 

  • Nath A, Bhat S, Devle J, Desai AJ (2005) Enhanced production of 3-hydroxybutyric acid (3-HB) by in vivo depolymerization of polyhydroxybutyric acid in 3-HB dehydrogenase mutants of Methylobaterium sp ZP24. Ann Microbiol 55:107–111

    CAS  Google Scholar 

  • Nishimura T, Saito T, Tomita K (1978) Purification and properties of β-ketothiolase from Zoogloea ramigera. Arch Microbiol 116:21–27

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Lee SY, Lee Y (2004) Biosynthesis of (R)-3-hydroxyalkanoic acids by metabolically engineered Escherichia coli. Appl Biochem Biotechnol 113:373–379

    Article  PubMed  Google Scholar 

  • Qiu YZ, Ouyang SP, Shen ZY, Wu Q, Chen GQ (2004) Metabolic engineering for production of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila. Macromol Biosci 4:255–261

    Article  CAS  PubMed  Google Scholar 

  • Rehm BHA, Steinbuchel A (2001) Heterologous expression of the acyl–acyl carrier protein thioesterase gene from the plant Umbellularia californica mediates polyhydroxyalkanoate biosynthesis in recombinant Escherichia coli. Appl Microbiol Biotechnol 55(2):205–209

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Grubelnik A, Hoerler M, Ruth K, Hartmann R, Felber H, Zinn M (2005) Bacterial poly(hydroxyalkanoates) as a source of chiral hydroxyalkanoic acids. Biomacromolecules 6:2290–2298

    Article  CAS  PubMed  Google Scholar 

  • Ruth K, Grubelnik A, Hartmann R Egli T, Zinn M, Ren Q (2007) Efficient production of (R)-3-hydroxycarboxylic acids by biotechnological conversion of polyhydroxyalkanoates and their purification. Biomacromolecules 8:279–286

    Article  CAS  PubMed  Google Scholar 

  • Seebach D, Roggo S, Zimmermann J (1987) Biological–chemical preparation of 3-hydroxycarboxylic acids and their use in EPC-synthesis. In: Bartmann W, Sharpless KB (eds) Stereochemistry of organic and bioorganic transformation. Workshop Conferences Hoechst, vol 17. Verlag Chemie, Weinheim, pp 85–126

    Google Scholar 

  • Seebach D, Beck AK, Breitschuh R, Job K (1992) Direct degradation of the biopolymer poly[(R)-(2)-3-hydroxybutyric acid] to (R)-(2)-3-hydroxybutanoic acid and its methyl ester. Org Synth 71:39–47

    Google Scholar 

  • Senior PJ, Dawes EA (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:238–255

    Google Scholar 

  • Spencer AK, Greenspan AD, Cronan JE (1978) Thioesterase I and II of Escherichia coli. J Biol Chem 253:5922–5926

    CAS  PubMed  Google Scholar 

  • Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. Macmillan, Basingstoke, pp 125–213

    Google Scholar 

  • Zheng Z, Gong Q, Liu T, Deng Y, Chen JC, Chen GQ (2004a) Thioesterase II of Escherichia coli plays an important role in 3-hydroxydecanoic acid production. Appl Environ Microbiol 70:3807–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Gong Q, Chen GQ (2004b) A novel method for production of 3-hydroxydecanoic acid by recombinant Escherichia coli and Pesudomonas putida. Chin J Chem Eng 12:550–555

    Google Scholar 

Download references

Acknowledgements

The strain E. coli BW25113 was kindly donated by Dr. BL Wanner of Purdue University, USA. Plasmid pBHR69 was donated by Professor A. Steinbüchel of the University of Muenster, Germany. This research was supported by the Natural Sciences Foundation of China Grant Nos. 20334020 and 30570024. Thanks must also be extended to the Hi-Tech Research and Development Program of China (863 Program) Grant No. 2006AA02Z242 and the National Basic Research Program of China (973 Program) No. 2007CB707804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Chen.

Additional information

Liu and Ouyang contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Ouyang, SP., Chung, A. et al. Microbial production of R-3-hydroxybutyric acid by recombinant E. coli harboring genes of phbA, phbB, and tesB . Appl Microbiol Biotechnol 76, 811–818 (2007). https://doi.org/10.1007/s00253-007-1063-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1063-0

Keywords

Navigation