Skip to main content
Log in

Reduction and partial degradation mechanisms of naphthylaminesulfonic azo dye amaranth by Shewanella decolorationis S12

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Reduction and biodegradation mechanisms of naphthylaminesulfonic azo dye amaranth using a newly isolated Shewanella decolorationis strain S12 were investigated. Under anaerobic conditions, amaranth was reduced by strain S12, and a stoichiometric amount of two reduction products RP-1 and RP-2 were generated. UV/visible spectrophotometric and high performance liquid chromatography (HPLC) analysis indicated that RP-1 and RP-2 were 1-aminenaphthylene -4-sulfonic acid and 1-aminenaphthylene-2-hydroxy-3, 6-disulfonic acid. The result strongly supports a mechanism of azo dye reduction by the process via the reductive cleavage of the azo bond to form corresponding aromatic amines. The result of HPLC analyses revealed that these aromatic amines were not able to be mineralized by strain S12 under anaerobic conditions. But after re-aeration of the decolorized culture, RP-2 was mineralized completely by this microorganism, but the consumption of RP-1 was not observed. Ames test showed that amaranth had mutagenic but no cytotoxic potential. The mutagenic potential was relieved after the anaerobic treatment with strain S12 as the mutagenic effect of the two reduction products from amaranth was not detected by Ames test. Thus, the ability of strain S12 to reduce and partially mineralize the naphthylaminesulfonic azo dye efficiently was demonstrated, which can potentially be used to biodegrade and detoxify wastewater containing azo dyes using an alternating anaerobic/aerobic treatment procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bin Y, Jiti Z, Jing W, Cuihong D, Hongman H, Zhiyong S, Yongming B (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236:129–136

    Article  Google Scholar 

  • Blümel S, Busse H-J, Stolz A, Kämpfer P (2001) Xenophilus azovorans gen. nov. sp. nov., a soil bacterium able to degrade azo dyes of the Orange II type. Int J Syst Evol Microbiol 51:1831–1837

    Article  Google Scholar 

  • Bragger JL, Lloyd AW, Soozandehfar SH, Bloomfield SF, Marriott C, Martin GP (1997) Investigations into the azo reducing activity of a common colonic microorganism. Int J Pharm 157:61–71

    Article  CAS  Google Scholar 

  • Brilon C, Beckmann W, Hellwig M, Knackmuss H-J (1981a) Enrichment and isolation of naphthalenesulfonic acid-utilizing pseudomonads. Appl Environ Microbiol 42:39–43

    Article  CAS  Google Scholar 

  • Brilon C, Beckmann W, Knackmuss H-J (1981b) Catabolism of naphthalenesulfonic acids by Pseudomonas sp A3 and Pseudomonas sp C22. Appl Environ Microbiol 42:44–55

    Article  CAS  Google Scholar 

  • Brown JP (1981) Reduction of polymeric azo and nitro dyes by intestinal bacteria. Appl Environ Microbiol 41:1283–1286

    Article  CAS  Google Scholar 

  • Brown MA, DeVito SC (1993) Predicting azo dye toxicity. Crit Rev Environ Sci Technol 23:249–324

    Article  CAS  Google Scholar 

  • Bumpus JA (1995) Microbial degradation of azo dyes. Prog Ind Microbiol 32:157–176

    Article  CAS  Google Scholar 

  • Chung KT, Cerniglia CE (1992) Mutagenicity of azo dyes: structure-activity relationships. Mutat Res 77:201–220

    Article  Google Scholar 

  • Chung KT, Fulk GE, Egan M (1978) Reduction of azo dyes by intestinal anaerobes. Appl Environ Microbiol 35:558–562

    Article  CAS  Google Scholar 

  • Coughlin MF, Kinkle BK, Bishop PL (1999) Degradation of azo dyes containing aminonaphthol AN4S by Sphingomo1 sp strain 1CX. Ind Microbiol Biotechnol 23:341–346

    Article  CAS  Google Scholar 

  • Dubin P, Wright KL (1975) Reduction of azo food dyes in cultures of Proteus vulgaris. Xenobiotica 5:563–571

    Article  CAS  Google Scholar 

  • Haug W, Schmidt A, Nörtemann B, Hempel DC, Stolz A, Knackmuss H-J (1991) Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Appl Environ Microbiol 57:3144–3149

    Article  CAS  Google Scholar 

  • Hong Y, Chen X, Guo J, Xu Z, Xu M, Sun G (2007) Effects of electron donors and acceptors on anaerobic azo dyes reduction by Shewanella decolorationis S12. Appl Microbiol Biotechnol (in press). DOI https://doi.org/10.1007/s00253-006-0657-2

  • Hu TL (1994) Decolourization of reactive azo dyes by transformation with Pseudomo luteola. Bioresour Technol 49:47–51

    Article  CAS  Google Scholar 

  • Kudlich M, Keck A, Klein J, Stolz A (1997) Localization of the enzyme system involved in the anaerobic degradation of azo dyes by Sphingomonas sp. BN6 and effect of artificial redox mediators on the rate of azo reduction. Appl Environ Microbiol 63:3691–3694

    Article  CAS  Google Scholar 

  • Maguire RJ (1992) Occurrence and persistence of dyes in a Canadian river. Water Sci Technol 25:265–270

    CAS  Google Scholar 

  • McCann J, Spingarn NE, Kobori J, Ames BN (1975) Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. PNAS 72:979–983

    Article  CAS  Google Scholar 

  • Miller TL, Wolin ML (1974) A serum bottle modification of the hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987

    Article  CAS  Google Scholar 

  • Nakanishi M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399

    Article  CAS  Google Scholar 

  • Nörtemann B, Kuhm AE, Knackmuss H-J, Stolz A (1994) Conversion of substituted naphthalenesulfonates by Pseudomonas sp BN6. Arch Microbiol 161:320–327

    Article  Google Scholar 

  • Pearcea CI, Lloydb JR, Guthriea JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigm 58:179–196

    Article  Google Scholar 

  • Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56:2146–2151

    Article  CAS  Google Scholar 

  • Raffi F, Hall JD, Cerniglia CE (1997) Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by clostridium species from the human intestinal tract. Food Chem Toxicol l35:897–901

    Article  Google Scholar 

  • Rau J, Stolz A (2003) Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases. Appl Environ Microbiol 69:3448–3455

    Article  CAS  Google Scholar 

  • Scheline RR, Nygaard RT, Longberg B (1970) Enzymatic reduction of the azo dye, Acid Yellow, by extracts of Streptococcus faecalis, isolated from rat intestine. Food Chem Toxicol 8:55–58

    Article  CAS  Google Scholar 

  • Selvam K, Swaminathan K, Keo-Sang C (2003) Microbial decolorization of azo dyes and dye industry effluent by Fomes lividus. World J Microbiol Biotechnol 19:591–593

    Article  CAS  Google Scholar 

  • Stolz A (1999) Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6. J Ind Microbiol Biotechnol 23:391–399

    Article  CAS  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  • Stolz A, Schmidt C, Denner EB, Busse H-J, Egli T, Kämpfer P (2000) Description of Sphingomonas xenophaga for strains BN6 and N,N which degrade xenobiotic aromatic compounds. Int J Syst Evol Bacteriol 50:35–41

    Article  CAS  Google Scholar 

  • Tan NC, van Leeuwen A, van Voorthuizen EM, Slenders P, Prenafeta-Boldú FX, Temmink H, Lettinga G, Field JA (2005) Fate and biodegradability of sulfonated aromatic amines. Biodegradation 16:527–537

    Article  CAS  Google Scholar 

  • Wittich R-M, Rast HG, Knackmuss H-J (1988) Degradation of naphthalene-2,6- and naphthalene-1,6-disulfonic acid by a Moraxella sp. Appl Environ Microbiol 54:1842–1847

    Article  CAS  Google Scholar 

  • Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    CAS  PubMed  Google Scholar 

  • Xu MY, Guo J, Cen YH, Zhong XY, Cao W, Sun GP (2005) Shewanella decolorationis sp. nov., decoloraning bacterium isolated from an activated-sludge of wastewater treatment plant. Int J Syst Evol Microbiol 55:363–368

    Article  CAS  Google Scholar 

  • Yatome C, Matsufuru H, Taguchi T, Ogawa T (1993) Degradation of 4′-dimethylaminoazobenzene-2-carboxylic acid by Pseudomonas stutzeri. Appl Microbiol Biotechnol 39:778–781

    Article  CAS  Google Scholar 

  • Zollinger H (1991) Color chemistry: syntheses, properties and applications of organic dyes and pigments, 2nd edn. Wiley-VCH, New York

    Google Scholar 

Download references

Acknowledgment

This research was supported by the National Natural Science Foundations (30670020, 3050009), Guangdong Provincial Programs for Natural Science Foundations (05100365,015017), and Chinese National Programs for High Technology Research and Development (06106Z3063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Y., Guo, J., Xu, Z. et al. Reduction and partial degradation mechanisms of naphthylaminesulfonic azo dye amaranth by Shewanella decolorationis S12. Appl Microbiol Biotechnol 75, 647–654 (2007). https://doi.org/10.1007/s00253-007-0838-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0838-7

Keywords

Navigation