Skip to main content
Log in

Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rhodococcus opacus strain B-4, which has recently been isolated as an organic solvent-tolerant bacterium, has a high hydrophobicity and exhibits a high affinity for hydrocarbons. This bacterium was able to survive for at least 5 days in organic solvents, including n-tetradecane, oleyl alcohol, and bis(2-ethylhexyl) phthalate (BEHP), which contained water less than 1% (w/v). The biocatalytic ability of R. opacus B-4 was demonstrated in the essentially nonaqueous BEHP using indigo production from indole as a model conversion. By the catabolism of oleic acid for NADH regeneration, indigo production increased up to 71.6 μg ml−1 by 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Akkara JA, Ayyagari MSR, Bruno FF (1999) Enzymatic synthesis and modification of polymers in nonaqueous solvents. Trends Biotechnol 17:67–73

    Article  CAS  Google Scholar 

  • Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angew Chem 33:2226–2254

    Article  Google Scholar 

  • Carrea G, Ottolina G, Riva S (1995) Role of solvents in the control of enzyme selectivity in organic media. Trends Biotechnol 13:63–70

    Article  CAS  Google Scholar 

  • de Carvalho CCCR, Cruz A, Angelova B, Fernandes P, Pons MN, Pinheiro HM, Cabral JMS, da Fonseca MMR (2004) Behavior of Mycobacterium sp. NRRL B-3805 whole cells in aqueous, organic-aqueous and organic media studied by fluorescence microscopy. Appl Microbiol Biotechnol 64:695–701

    Article  Google Scholar 

  • DeGray RJ, Killian LN (1962) Life in essentially nonaqueous hydrocarbons. Dev Ind Microbiol 3:296–303

    Google Scholar 

  • Dias ACP, Cabral JMS, Pinheiro HM (1994) Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents. Enzyme Microb Technol 16:708–714

    Article  CAS  Google Scholar 

  • Dorobantu L, Yeung AKC, Foght JM, Gray MR (2004) Stabilization of oil–water emulsions by hydrophobic bacteria. Appl Environ Miclobiol 70:6333–6336

    Article  CAS  Google Scholar 

  • Doukyu N, Toyoda K, Aono R (2003) Indigo production by Escherichia coli carrying the phenol hydroxylase gene from Acinetobacter sp. strain ST-550 in a water-organic solvent two-phase system. Appl Microbiol Biotechnol 60:720–725

    Article  CAS  Google Scholar 

  • Faizal I, Dozen K, Hong CS, Kuroda A, Takiguchi N, Ohtake H, Takeda K, Tsunekawa H, Kato J (2005) Isolation and characterization of solvent-tolerant Pseudomonas putida strain T-57, and its application to biotransformation of toluene to cresol in a two-phase (organic-aqueous) system. J Ind Microbiol Biotechnol 32:542–547

    Article  CAS  Google Scholar 

  • Fedorka-Cray PJ, Cray WC Jr, Anderson GA, Nickerson KW (1988) Bacterial tolerance of 100% dimethyl sulfoxide. Can J Microbiol 34:688–689

    Article  CAS  Google Scholar 

  • García-Alles LF, Gotor V (1998) Lipase-catalyzed transesterification in organic media: solvent effects on equilibrium and individual rate constants. Biotechnol Bioeng 59:684–694

    Article  Google Scholar 

  • Haring G, Luisi PL, Meussdoerffer F (1985) Solubilization of bacterial cells in organic solvents via reverse micelles. Biochem Biophys Res Commun 127:911–915

    Article  CAS  Google Scholar 

  • Hirasawa K, Ishii Y, Kobayashi M, Koizumi K, Maruhashi K (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65:239–246

    Article  CAS  Google Scholar 

  • Hudson EP, Eppler RK, Clark DS (2005) Biocatalysis in semi-aqueous and nearly anhydrous conditions. Curr Opin Biotechnol 16:637–643

    Article  CAS  Google Scholar 

  • Inoue A, Horikoshi K (1989) A Pseudomonas putida thrives in high concentrations of toluene. Nature 338:264–266

    Article  CAS  Google Scholar 

  • Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

    Article  CAS  Google Scholar 

  • Kataoka M, Kita K, Wada M, Yasohara Y, Hasegawa J, Shimizu S (2003) Novel bioreduction system for the production of chiral alcohols. Appl Microbiol Biotechnol 62:437–445

    Article  CAS  Google Scholar 

  • Kato C, Inoue A, Horikoshi K (1996) Isolating and characterizing deep sea marine microorganisms. Trends Biotechnol 14:6–12

    Article  CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  Google Scholar 

  • Komukai-Nakamura S, Sugiura K, Yamauchi-Inomata Y, Venkateswaran K, Yamamoto S, Tanaka H, Harayama S (1996) Construction of bacterial consortia that degrade Arabian light crude oil. J Ferment Bioeng 82:570–574

    Article  CAS  Google Scholar 

  • Kosjek B, Stampfer W, Pogorevc M, Goessler W, Faber K, Kroutil W (2004) Purification and characterization of a chemotolerant alcohol dehydrogenase applicable to coupled redox reactions. Biotechnol Bioeng 86:55–62

    CAS  PubMed  Google Scholar 

  • Kula MR, Kragl U (2000) Dehydrogenases in the synthesis of chiral compounds. In: Patel RN (ed) Stereoselective biocatalysis, 1st edn. Marcel Dekker, New York, pp 839–866

    Chapter  Google Scholar 

  • Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    Article  CAS  Google Scholar 

  • Mertens R, Greiner L, van den Ban ECD, Haaker HBCM, Liese A (2003) Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration. J Mol Catal B Enzym 24–25:39–52

    Article  Google Scholar 

  • Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J (2005a) Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:378–382

    Article  CAS  Google Scholar 

  • Na KS, Nagayasu K, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J (2005b) Development of a genetic transformation system for benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:408–414

    Article  CAS  Google Scholar 

  • Nakagawa Y, Waku K (1985) Determination of the amounts of free arachidonic acid in resident and activated rabbit alveolar macrophages by fluorometric high performance liquid chromatography. Lipids 20:482–487

    Article  CAS  Google Scholar 

  • Neufeld RJ, Zajic JE, Gerson DF (1980) Cell surface measurements in hydrocarbon and carbohydrate fermentations. Appl Environ Microbiol 39:511–517

    Article  CAS  Google Scholar 

  • Paje ML, Neilan BA, Couperwhite I (1997) A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology 143:2975–2981

    Article  CAS  Google Scholar 

  • Pfammatter N, Guadalupe AA, Luisi PL (1989) Solubilization and activity of yeast cells in water-in-oil microemulsion. Biochem Biophys Res Commun 161:1244–1251

    Article  CAS  Google Scholar 

  • Sardessai Y, Bhosle S (2002) Organic solvent tolerant bacteria in mangrove ecosystem. Curr Sci 82:622–623

    CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  Google Scholar 

  • Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths—biocatalysis in industrial synthesis. Science 299:1694–1697

    Article  CAS  Google Scholar 

  • Sokolovská I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027

    Article  Google Scholar 

  • Sutcliffe IC (1998) Cell envelope composition and organization in the genus Rhodococcus. Antonie van Leeuwenhoek 74:49–58

    Article  CAS  Google Scholar 

  • Szentirmai A (1990) Microbial physiology of sidechain degradation of sterols. J Ind Microbiol 6:101–106

    Article  CAS  Google Scholar 

  • Tishkov VI, Galkin AG, Fedorchuk VV, Savitsky PA, Rojkova AM, Gieren H, Kula MR (1999) Pilot scale production and isolation of recombinant NAD+- and NADP+- specific formate dehydrogenases. Biotechnol Bioeng 64:187–193

    Article  CAS  Google Scholar 

  • Wescott CR, Klibanov AM (1994) The solvent dependence of enzyme specificity. Biochim Biophys Acta 1206:1–9

    Article  CAS  Google Scholar 

  • Zaks A, Klibanov AM (1985) Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci U S A 82:3192–3196

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partly supported by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohsuke Honda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, S., Satoi, M., Iwasa, Y. et al. Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents. Appl Microbiol Biotechnol 74, 761–767 (2007). https://doi.org/10.1007/s00253-006-0729-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0729-3

Keywords

Navigation