Skip to main content
Log in

A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A unique multifunctional glycosyl hydrolase was discovered by screening an environmental DNA library prepared from a microbial consortium collected from cow rumen. The protein consists of two adjacent catalytic domains. Sequence analysis predicted that one domain conforms to glycosyl hydrolase family 5 and the other to family 26. The enzyme is active on several different β-linked substrates and possesses mannanase, xylanase, and glucanase activities. Site-directed mutagenesis studies on the catalytic residues confirmed the presence of two functionally independent catalytic domains. Using site-specific mutations, it was shown that one catalytic site hydrolyzes β-1,4-linked mannan substrates, while the second catalytic site hydrolyzes β-1,4-linked xylan and β-1,4-linked glucan substrates. Polysaccharide Analysis using Carbohydrate gel Electrophoresis (PACE) also confirmed that the enzyme has discrete domains for binding and hydrolysis of glucan- and mannan-linked polysaccharides. Such multifunctional enzymes have many potential industrial applications in plant processing, including biomass saccharification, animal feed nutritional enhancement, textile, and pulp and paper processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    CAS  PubMed  Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    CAS  PubMed  Google Scholar 

  • Blum DL, Kataeva IA, Li XL, Ljungdahl LG (2000) Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol 182:1346–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolam DN, Hughes N, Virden R, Lakey JH, Hazlewood GP, Henrissat B, Braithwaite KL, Gilbert HJ (1996) Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry 35:16195–16204

    CAS  PubMed  Google Scholar 

  • Bolam DN, Xie H, Pell G, Hogg D, Galbraith G, Henrissat B, Gilbert HJ (2004) X4 modules represent a new family of carbohydrate-binding modules that display novel properties. J Biol Chem 279:22953–22963

    CAS  PubMed  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11:593–600

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Brennan Y, Callen WN, Christoffersen L, Dupree P, Goubet F, Healey S, Hernandez M, Keller M, Li K, Palackal N, Sittenfeld A, Tamayo G, Wells S, Hazlewood GP, Mathur EJ, Short JM, Robertson DE, Steer BA (2004) Unusual microbial xylanases from insect guts. Appl Environ Microbiol 70:3609–3617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cescutti P, Campa C, Delben F, Rizzo R (2002) Structure of the oligomers obtained by enzymatic hydrolysis of the glucomannan produced by the plant Amorphophallus konjac. Carbohydr Res 337:2505–2511

    CAS  PubMed  Google Scholar 

  • Czjzek M, Bolam DN, Mosbah A, Allouch J, Fontes CM, Ferreira LM, Bornet O, Zamboni V, Darbon H, Smith NL, Black GW, Henrissat B, Gilbert HJ (2001) The location of the ligand-binding site of carbohydrate-binding modules that have evolved from a common sequence is not conserved. J Biol Chem 276:48580–48587

    CAS  PubMed  Google Scholar 

  • Davies GJ, Henrissat B (2002) Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era. Biochem Soc Trans 30:291–297

    CAS  PubMed  Google Scholar 

  • DeSantis G, Zhu Z, Greenberg WA, Wong K, Chaplin J, Hanson SR, Farwell B, Nicholson LW, Rand CL, Weiner DP, Robertson DE, Burk MJ (2002) An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc 124:9024–9025

    CAS  PubMed  Google Scholar 

  • Ducros V, Czjzek M, Belaich A, Gaudin C, Fierobe HP, Belaich JP, Davies GJ, Haser R (1995) Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 3:939–949

    CAS  PubMed  Google Scholar 

  • Ferrer M, Martinez-Abarca F, Golyshin PN (2005) Mining genomes and ‘metagenomes’ for novel catalysts. Curr Opin Biotechnol 16:588–593

    CAS  PubMed  Google Scholar 

  • Fox JD, Robyt JF (1991) Miniaturization of three carbohydrate analyses using a microsample plate reader. Anal Biochem 195:93–96

    CAS  PubMed  Google Scholar 

  • Fry SC (2000) The growing plant cell wall: chemical and metabolic analysis. Blackburn, Caldwell, New Jersey

    Google Scholar 

  • Gibbs MD, Reeves RA, Farrington GK, Anderson P, Williams DP, Bergquist PL (2000) Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1. Curr Microbiol 40:333–340

    CAS  PubMed  Google Scholar 

  • Goubet F, Jackson P, Deery MJ, Dupree P (2002) Polysaccharide analysis using carbohydrate gel electrophoresis: a method to study plant cell wall polysaccharides and polysaccharide hydrolases. Anal Biochem 300:53–68

    CAS  PubMed  Google Scholar 

  • Gray KA, Richardson TH, Robertson DE, Swanson PE, Subramanian MV (2003) Soil-based gene discovery: a new technology to accelerate and broaden biocatalytic applications. Adv Appl Microbiol 52:1–27

    CAS  PubMed  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    CAS  PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    CAS  PubMed  Google Scholar 

  • Henrissat B, Davies GJ (2000) Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol 124:1515–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hogg D, Woo EJ, Bolam DN, McKie VA, Gilbert HJ, Pickersgill RW (2001) Crystal structure of mannanase 26A from Pseudomonas cellulosa and analysis of residues involved in substrate binding. J Biol Chem 276:31186–31192

    CAS  PubMed  Google Scholar 

  • Hogg D, Pell G, Dupree P, Goubet F, Martin-Orue SM, Armand S, Gilbert HJ (2003) The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem J 371:1027–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krause DO, Russell JB (1996) How many ruminal bacteria are there? J Dairy Sci 79:1467–1475

    CAS  PubMed  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    CAS  PubMed  Google Scholar 

  • Palackal N, Brennan Y, Callen WN, Dupree P, Frey G, Goubet F, Hazlewood GP, Healey S, Kang YE, Kretz KA, Lee E, Tan X, Tomlinson GL, Verruto J, Wong VW, Mathur EJ, Short JM, Robertson DE, Steer BA (2004) An evolutionary route to xylanase process fitness. Protein Sci 13:494–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prates JA, Tarbouriech N, Charnock SJ, Fontes CM, Ferreira LM, Davies GJ (2001) The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. Structure (Camb) 9:1183–1190

    CAS  Google Scholar 

  • Raghothama S, Simpson PJ, Szabo L, Nagy T, Gilbert HJ, Williamson MP (2000) Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A. Biochemistry 39:978–984

    CAS  PubMed  Google Scholar 

  • Rees HC, Grant S, Jones B, Grant WD, Heaphy S (2003) Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7:415–421

    CAS  PubMed  Google Scholar 

  • Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D, Macomber J, Short JM, Robertson DE, Miller C (2002) A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable alpha-amylase. J Biol Chem 277:26501–26507

    CAS  PubMed  Google Scholar 

  • Robertson DE, Steer BA (2004) Recent progress in biocatalyst discovery and optimization. Curr Opin Chem Biol 8:141–149

    CAS  PubMed  Google Scholar 

  • Robertson DE, Mathur EJ, Swanson RV, Marrs BL, Short JM (1996) The discovery of new biocatalysts from microbial diversity. SIM News 46:3–8

    Google Scholar 

  • Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K, McQuaid J, Farwell B, Preston LA, Tan X, Snead MA, Keller M, Mathur E, Kretz PL, Burk MJ, Short JM (2004) Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 70:2429–2436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rondon MR, Goodman RM, Handelsman J (1999) The Earth’s bounty: assessing and accessing soil microbial diversity. Trends Biotechnol 17:403–409

    CAS  PubMed  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    CAS  PubMed  Google Scholar 

  • Shimahara H, Suzuki H, Sugiyama N, Nisizawa K (1975) Partial purification of β-mannanase from the konjac tubers and their substrate specificity in relation to the structure of konjac glucomannan. Agric Biol Chem 39:301–312

    CAS  Google Scholar 

  • Short JM (1997) Recombinant approaches for accessing biodiversity. Nat Biotechnol 15:1322–1323

    CAS  PubMed  Google Scholar 

  • Short JM (1999) Protein activity screening of clones having DNA from uncultured microorganisms. U.S. Patent 5958672

  • Short JM (2001) Gene expression library produced from DNA from uncultivated microorganisms and methods for making the same. U.S. Patent 6280926

  • Short JM, Keller M (2001) High throughput screening for novel enzymes. U.S. Patent 6174673

  • Short JM, Mathur EJ (1999) Production and use of normalized DNA libraries. U.S. Patent 6001574

  • Solbak AI, Richardson TH, McCann RT, Kline KA, Bartnek F, Tomlinson G, Tan X, Parra-Gessert L, Frey GJ, Podar M, Luginbühl P, Gray KA, Mathur EJ, Robertson DE, Burk MJ, Hazlewood GP, Short JM, Kerovuo J (2005) Discovery of pectin-degrading enzymes and directed evolution of a novel pectate lyase for processing cotton fabric. J Biol Chem 280:9431–9438

    CAS  PubMed  Google Scholar 

  • Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matsui H, Benno Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159–169

    CAS  Google Scholar 

  • Tanaka T, Fukui T, Imanaka T (2001) Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Biol Chem 276:35629–35635

    CAS  PubMed  Google Scholar 

  • Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296:1064–1066

    CAS  PubMed  Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    CAS  PubMed  Google Scholar 

  • Tunnicliffe RB, Bolam DN, Pell G, Gilbert HJ, Williamson MP (2005) Structure of a mannan-specific family 35 carbohydrate-binding module: evidence for significant conformational changes upon ligand binding. J Mol Biol 347:287–296

    CAS  PubMed  Google Scholar 

  • Waffenschmidt S, Jaenicke L (1987) Assay of reducing sugars in the nanomole range with 2,2′-bicinchoninate. Anal Biochem 165:337–340

    CAS  PubMed  Google Scholar 

  • Walter J, Mangold M, Tannock GW (2005) Construction, analysis, and beta-glucanase screening of a bacterial artificial chromosome library from the large-bowel microbiota of mice. Appl Environ Microbiol 71:2347–2354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehead TR (1993) Analyses of the gene and amino acid sequence of the Prevotella (Bacteroides) ruminicola23 xylanase reveals unexpected homology with endoglucanases from other genera of bacteria. Curr Microbiol 27:27–33

    CAS  PubMed  Google Scholar 

  • Yui T, Ogawa K, Sarko A (1992) Molecular and crystal structure of konjac glucomannan in the mannan II polymorphic form. Carbohydr Res 229:41–55

    CAS  PubMed  Google Scholar 

  • Zhao L, Han B, Huang Z, Miller M, Huang H, Malashock DS, Zhu Z, Milan A, Robertson DE, Weiner DP, Burk MJ (2004) Epoxide hydrolase-catalyzed enantioselective synthesis of chiral 1,2-diols via desymmetrization of meso-epoxides. J Am Chem Soc 126:11156–11157

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contributions of Diversa colleagues Eric Mathur, Martin Keller, Xuqiu Tan, Mark Burk, Shaun Healey, Walt Callen, Lisa Bibbs, and the members of the Sequencing Group, Cathy Chang, and the members of the Library Construction Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Steer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palackal, N., Lyon, C.S., Zaidi, S. et al. A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Appl Microbiol Biotechnol 74, 113–124 (2007). https://doi.org/10.1007/s00253-006-0645-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0645-6

Keywords

Navigation