Skip to main content
Log in

Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To monitor anaerobic environmental engineering system, new method of quantification for methanogens was tested. It is based on the measurement of specific binding (hybridization) of 16S rRNA-targeted oligonucleotide probe Arc915, performed by fluorescence in situ hybridization (FISH) and quantified by fluorescence spectrometry. Average specific binding of Arc915 probe was 13.4±0.5 amol/cell of autofluorescent methanogens. It was 14.3, 13.3, and 12.9 amol/cell at the log phase, at stationary phase and at the period of cell lysis of batch culture, respectively. Specific binding of Arc915 probe per 1 ml of microbial sludge suspension from anaerobic digester linearly correlated with concentration of autofluorescent cells of methanogens. Coefficient of correlation was 0.95. Specific binding of oligonucleotide probe Arc915 can be used for the comparative estimation of methanogens during anaerobic digestion of organic waste. Specific binding of Arc915 probe was linear function of anaerobic sludge concentration when it was between 1.4 and 14.0 mg/ml. Accuracy of the measurements in this region was from 5 to 12%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal LK, Harada H, Tseng IC, Okui H (1997) Treatment of dilute wastewater in a UASB reactor at a moderate temperature: microbiological aspects. J Ferment Bioeng 83:185–190

    Article  CAS  Google Scholar 

  • Ahring BK, Ibrahim AA, Mladenovska Z (2001) Effect of temperature increase from 55 to 65 degrees C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res 35:2446–2452

    Article  CAS  Google Scholar 

  • Alm EW, Oerther DB, Larsen N, Stahl DA, Raskin L (1996) The oligonucleotide probe database. Appl Environ Microbiol 62:3557–3559

    CAS  Google Scholar 

  • Amann R, Kuhl M (1998) In situ methods for assessment of microorganisms and their activities. Curr Opin Microbiol 1:352–358

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  • Boone DR, Whitman WB, Koga Y (2001) Order III. Methanosarcinales ord. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol. 1. The Archaea and the deeply branching and phototrophic Bacteria. Springer, Berlin Heidelberg New York, pp 268–294

    Google Scholar 

  • DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–394

    Article  CAS  Google Scholar 

  • Elias DA, Krumholz LR, Tanner RS, Suflita JM (1999) Estimation of methanogen biomass by quantitation of coenzyme M. Appl Environ Microbiol 65:5541–5545

    CAS  Google Scholar 

  • Hansen KH, Ahring BK, Raskin L (1999) Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization. Appl Environ Microbiol 65:4767–4774

    CAS  Google Scholar 

  • Heine-Dobbernack E, Schoberth SM, Sahm H (1988) Relationship of intracellular coenzyme F420 content to growth and metabolic activity of Methanobacterium bryantii and Methanosarcina barkeri. Appl Environ Microbiol 54:454–459

    CAS  Google Scholar 

  • Ince BK, Ince O (2000) Changes to bacterial community make-up in a two-phase anaerobic digestion system. J Chem Technol Biotechnol 75:500–508

    Article  CAS  Google Scholar 

  • Ivanov V, Tay STL, Tay JH (2003) Monitoring of microbial diversity by fluorescence in-situ hybridization and fluorescence spectrometry. Water Sci Technol 45:133–138

    Google Scholar 

  • Ivanov V, Wang JY, Stabnikova O, Tay STL, Tay JH (2004) Microbiological monitoring in the biodegradation of sewage sludge and food waste. J Appl Microbiol 96:641–647

    Article  CAS  Google Scholar 

  • Joachimsthal EL, Ivanov V, Tay JH, Tay STL (2003) Quantification of whole-cell in situ hybridization with oligonucleotide probes by flow cytometry of Escherichia coli cells. World J Microbiol Biotechnol 19:527–533

    Article  CAS  Google Scholar 

  • Joachimsthal EL, Ivanov V, Tay STL, Tay JH (2004) Bacteriological examination of ballast water in Singapore harbor by flow cytometry with FISH. Mar Pollut Bull 49:334–343

    Article  CAS  Google Scholar 

  • Kamagata Y, Mikami E (1991) Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196

    Article  Google Scholar 

  • Lin X, White RH (1986) Occurrence of coenzyme F420 and its γ-monoglutamyl derivative in nonmethanogenic archaebacteria. J Bacteriol 168:444–448

    CAS  Google Scholar 

  • Mayerhofer LE, Macario AJ, de Macario EC (1992) Lamina, a novel multicellular form of Methanosarcina mazei S-6. J Bacteriol 174:309–314

    CAS  Google Scholar 

  • Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    CAS  Google Scholar 

  • Pohland FG, Ghosh S (1971) Developments in anaerobic treatments process. Biotechnol Bioeng Symp 2:85–106

    Google Scholar 

  • Pollard PC, Greenfield PF (1997) Measuring in situ bacterial specific growth rates and population dynamics in wastewater. Water Res 31:1074–1082

    Article  CAS  Google Scholar 

  • Raskin L, Srtomley JM, Rittmann BE, Stahl DA (1994a) Group-specific 16S rRNA hybridization process to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    CAS  Google Scholar 

  • Raskin L, Poulsen LK, Noguera DR, Rittmann BE, Stahl D (1994b) Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol 60:1241–1248

    CAS  Google Scholar 

  • Raskin L, Zheng D, Griffin ME, Stroot PG, Mirsa P (1995) Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antonie Van Leeuwenhoek 68:297–308

    Article  CAS  Google Scholar 

  • Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridisation using 16S rRNA-target oligonucleotides reveals location of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288

    CAS  Google Scholar 

  • Sawayama S, Tada C, Tsukahara K, Yagishita T (2004) Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. J Biosci Bioeng 1:65–70

    Google Scholar 

  • Shin HS, Han SK, Song YC, Lee CY (2001) Performance of USAB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste. Water Res 35:441–447

    Article  Google Scholar 

  • Skillman LC, Evans PN, Naylor GE, Morvan B, Jarvis GN, Joblin KN (2004) 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10:277–285

    Article  CAS  Google Scholar 

  • Solera R, Romero LI, Sales D (2001) Determination of the microbial population in thermophilic anaerobic reactor: comparative analysis by different counting methods. Anaerobe 7:79–86

    Article  CAS  Google Scholar 

  • Sorensen AH, Torsvik VL, Torsvik T, Poulsen LK, Ahring BK (1997) Whole-cell hybridisation of Methanosarcina cells with two new oligonucleotide probes. Appl Environ Microbiol 63:3043–3050

    CAS  Google Scholar 

  • Stabnikova O, Ang SS, Liu XY, Ivanov V, Tay JH, Wang JY (2005) The use of hybrid anaerobic solid–liquid (HASL) system for the treatment of lipid-containing food waste. J Chem Technol Biotechnol 80:455–461

    Article  CAS  Google Scholar 

  • Stams AJM, Grolle KCF, Frijters CTM, Van Lier JB (1992) Enrichment of thermophilic propionate-oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum. Appl Environ Microbiol 58:346–352

    CAS  Google Scholar 

  • Svenning MM, Wartiainen I, Hestnes AG, Binnerup SJ (2003) Isolation of methane oxidising bacteria from soil by use of a soil substrate membrane system. FEMS Microbiol Ecol 44:347–354

    Article  CAS  Google Scholar 

  • Tagawa T, Syutsubo K, Sekiguchi Y, Ohashi A, Harada H (2000) Quantification of methanogen cell density in anaerobic granular sludge consortia by fluorescence in-situ hybridization. Water Sci Technol 42:77–82

    CAS  Google Scholar 

  • Tay STL, Ivanov V, Kim IS, Feng L, Tay JH (2001) Quantification of ratios of Bacteria and Archaea in methanogenic microbial community by fluorescence in situ hybridization and fluorescence spectrometry. World J Microbiol Biotechnol 17:583–589

    Article  CAS  Google Scholar 

  • Uyanik S, Sallis PJ, Anderson GK (2002) The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part II: compartmentalization of bacterial populations. Water Res 36:944–955

    Article  CAS  Google Scholar 

  • Verstraete W, de Beer D, Pena M, Lettinga G, Lens P (1996) Anaerobic bioprocessing of organic wastes. World J Microbiol Biotechnol 12:221–238

    Article  CAS  Google Scholar 

  • Wang JY, Zhang H, Stabnikova O, Ang SS, Tay JH (2005) A hybrid anaerobic solid–liquid (HASL) system for food waste digestion. Water Sci Technol 52:223–228

    CAS  Google Scholar 

  • Wang JY, Liu XY, Kao CM, Stabnikova O (2006) Digestion of pre-treated food waste in hybrid anaerobic solid–liquid (HASL) system. J Chem Technol Biotechnol 81:345–351

    Article  CAS  Google Scholar 

  • Wu W, Hu J, Gu X, Zhao Y, Zhang H, Gu G (1987) Cultivation of anaerobic granular sludge in UASB reactors with aerobic activated sludge as seed. Water Res 21:789–799

    Article  CAS  Google Scholar 

  • Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465–472

    CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Environment Agency, the Ministry of the Environment, Singapore, and by Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Stabnikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stabnikova, O., Liu, XY., Wang, JY. et al. Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe. Appl Microbiol Biotechnol 73, 696–702 (2006). https://doi.org/10.1007/s00253-006-0490-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0490-7

Keywords

Navigation