Skip to main content
Log in

Biodegradability and biodegradation of poly(lactide)

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Poly(lactide) (PLA) has been developed and made commercially available in recent years. One of the major tasks to be taken before the widespread application of PLA is the fundamental understanding of its biodegradation mechanisms. This paper provides a short overview on the biodegradability and biodegradation of PLA. Emphasis is focused mainly on microbial and enzymatic degradation. Most of the PLA-degrading microorganisms phylogenetically belong to the family of Pseudonocardiaceae and related genera such as Amycolatopsis, Lentzea, Kibdelosporangium, Streptoalloteichus, and Saccharothrix. Several proteinous materials such as silk fibroin, elastin, gelatin, and some peptides and amino acids were found to stimulate the production of enzymes from PLA-degrading microorganisms. In addition to proteinase K from Tritirachium album, subtilisin, a microbial serine protease and some mammalian serine proteases such as α-chymotrypsin, trypsin, and elastase could also degrade PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic rule, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai H, Dave V, Gross RA, McCarthy SP (1996) Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J Polym Sci B Polym Phys 34:2701–2708

    Article  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  • Fukuzaki H, Yoshida M, Asano M, Kumakura M (1989) Synthesis of copoly(d,l-Lactic acid) with relatively low molecular weight and in vitro degradation. Eur Polym J 25:1019–1026

    Article  CAS  Google Scholar 

  • Ikura Y, Kudo T (1999) Isolation of a microorganism capable of degrading poly(l-lactide). J Gen Appl Microbiol 45:247–251

    Article  CAS  PubMed  Google Scholar 

  • Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly(l-lactic acid) single crystals. Macromolecules 31:2461–2467

    Article  CAS  Google Scholar 

  • Jarerat A, Tokiwa Y (2001) Degradation of poly(l-lactide) by fungus. Macromol Biosci 1:136–140

    Article  CAS  Google Scholar 

  • Jarerat A, Tokiwa Y (2003a) Poly(l-lactide) degradation by Saccharotrix waywayandensis. Biotechnol Lett 25:401–404

    Article  CAS  PubMed  Google Scholar 

  • Jarerat A, Tokiwa Y (2003b) Poly(l-lactide) degradation by Kibdelosporangium aridum. Biotechnol Lett 25:2035–2038

    Article  CAS  PubMed  Google Scholar 

  • Jarerat A, Pranamuda H, Tokiwa Y (2002) Poly(l-lactide)-degrading activity in various actinomycetes. Macromol Biosci 2:420–428

    Article  CAS  Google Scholar 

  • Jarerat A, Tokiwa Y, Tanaka H (2004) Microbial poly(l-lactide)-degrading enzyme induced by amino acids, peptides and poly(l-amino acids). J Polym Environ 12:139–146

    Article  CAS  Google Scholar 

  • Li S, McCarthy (1999) Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s. Macromolecules 32:4454–4456

    Article  CAS  Google Scholar 

  • Lim HA, Raku T, Tokiwa Y (2004) A new method for the evaluation of biodegradable plastic using coated cellulose paper. Macromol Biosci 4:875–881

    Article  CAS  PubMed  Google Scholar 

  • Lim HA, Raku T, Tokiwa Y (2005) Hydrolysis of polyesters by serine proteases. Biotechnol Lett 27:459–464

    Article  CAS  PubMed  Google Scholar 

  • Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152

    Article  CAS  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyses polylactic acid and other biodegradable plastics. Appl Environ Microbiol 7:7548–7550

    Article  CAS  Google Scholar 

  • McDonald RT, McCarthy S, Gross RA (1996) Enzymatic degradability of poly(lactide): effects of chain stereochemistry and material crystallinity. Macromolecules 29:7356–7361

    Article  Google Scholar 

  • Moon SI, Urayama H, Kimura Y (2003) Structural characterization and degradability of poly(l-lactic acid)s incorporating phenyl-substituted alpha-hydroxy acids as comonomers. Macromol Biosci 3:301–309

    Article  CAS  Google Scholar 

  • Nakamura K, Tomita T, Abe N, Kamio Y (2001) Purification and characterization of an extracellular poly(l-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Appl Environ Microbiol 67:345–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida H, Tokiwa Y (1992) Effects of higher-order structure of poly(3-hydroxybutyrate) on its biodegradation. I. Effects of heat treatment on microbial degradation. J Appl Polym Sci 46:1467–1476

    Article  CAS  Google Scholar 

  • Nishida H, Tokiwa Y (1993) Distribution of poly (â-hydroxybutyrate) and poly (å-caprolactone) aerobic degrading microorganisms in different environments. J Environ Polym Degrad 1:227–233

    Article  CAS  Google Scholar 

  • Oda Y, Yonetsu A, Urakami T, Tomomura K (2000) Degradation of polylactide by commercial proteases. J Polym Environ 8:29–32

    Article  Google Scholar 

  • Ohkita T, Lee SH (2006) Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites. J Appl Polym Sci 100:3009–3017

    Article  CAS  Google Scholar 

  • Pranamuda H, Tokiwa Y (1999) Degradation of poly(l-lactide) by strains belonging to genus Amycolatopsis. Biotechnol Lett 21:901–905

    Article  CAS  Google Scholar 

  • Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol 63:1637–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pranamuda H, Chollakup R, Tokiwa Y (1999) Degradation of polycarbonate by a polyester-degrading strain, Amycolatopsis sp. strain HT-6. Appl Environ Microbiol 65:4220–4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pranamuda H, Tsuchii A, Tokiwa Y (2001) Poly(l-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromol Biosci 1:25–29

    Article  CAS  Google Scholar 

  • Reeve, MS, McCarthy SP, Downey MJ, Gross RA (1994) Polylactide stereochemistry: effect on enzymatic degradability. Macromolecules 27:825–831

    Article  CAS  Google Scholar 

  • Sakai K, Kawano H, Iwami A, Nakamura M, Moriguchi M (2001) Isolation of a thermophilic poly-l-lactide degrading bacterium from compost and its enzymatic characterization. J Biosci Bioeng 92:298–300

    Article  CAS  PubMed  Google Scholar 

  • Shigeno YA, Teeraphatpornchai T, Teamtisong K, Nomura N, Uchiyama H, Nakahara T, Kambe TN (2003) Cloning and sequencing of a poly(dl-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli. Appl Environ Microbiol 69:2498–2504

    Article  CAS  Google Scholar 

  • Steinbuchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24

    Article  CAS  Google Scholar 

  • Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64:5008–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Okajima S, Toshima K, Matsumura S (2004) Lipase-catalyzed transformation of poly(lactic acid) into cyclic oligomers. Macromol Biosci 4:346–353

    Article  CAS  PubMed  Google Scholar 

  • Tansengco ML, Tokiwa Y (1998) Comparative population study of aliphatic polyesters-degrading microorganisms at 50 °C. Chem Lett 27:1043–1044

    Article  Google Scholar 

  • Tokiwa Y, Suzuki T (1978) Hydrolysis of polyesters by Rhizopus delemar lipase. Agric Biol Chem 42:1071–1072

    CAS  Google Scholar 

  • Tokiwa Y, Suzuki T (1981) Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J Appl Polym Sci 26:441–448

    Article  CAS  Google Scholar 

  • Tokiwa Y, Suzuki T, Ando T (1979) Synthesis of copolyamide-esters and some aspects involved in their hydrolysis by lipase. J Appl Polym Sci 24:1701–1711

    Article  CAS  Google Scholar 

  • TokiwaY, Konno M, Nishida H (1999) Isolation of silk degrading microorganisms and its poly(l-lactide) degradability. Chem Lett 28: 355–356

    Article  Google Scholar 

  • Tokiwa Y, Pranamuda H, Rivaldi JD (2002) Polymerization of poly(d-lactide) and polyglycolide creates a novel biodegradable polymer (paper presented on the 10th Annual meeting of the BioEnvironmental Polymer Society, New Mexico, USA)

  • Tomita K, Kuroki Y, Nagai K (1999) Isolation of thermophiles degrading poly(l-lactic acid). J Biosci Bioeng 87:752–755

    Article  CAS  PubMed  Google Scholar 

  • Tomita K, Tsuji H, Nakajima T, Kikuchi Y, Ikarashi K, Ikeda N (2003) Degradation of poly(d-lactic acid) by a thermophile. Polym Degrad Stab 81:167–171

    Article  CAS  Google Scholar 

  • Tomita K, Nakajima T, Kikuchi Y, Miwa N (2004) Degradation of poly(l-lactic acid) by a newly isolated thermophile. Polym Degrad Stab 84:433–438

    Article  CAS  Google Scholar 

  • Torres A, Li SM, Roussos S, Vert M (1996a) Degradation of l-and dl-lactic acid oligomers in the presence of Fusarium moniliforme and Pseudomonas putida. J Environ Polym Degrad 4:213–223

    Article  CAS  Google Scholar 

  • Torres A, Li SM, Roussos S, Vert M (1996b) Screening of microorganisms for biodegradation of poly(lactic acid) and lactic acid-containing polymers. Appl Environ Microbiol 62:2393–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji H, Ishizaka T (2001) Preparation of porous poly(δ-caprolactone) films from blends by selective enzymatic removal of poly(l-lactide). Macromol Biosci 1:359–365

    Article  Google Scholar 

  • Tsuji H, Miyauchi S (2001) Poly(l-lactide) 6. Effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polym Degrad Stab 71:415–424

    Article  CAS  Google Scholar 

  • Urayama H, Kanamori T, Kimura Y (2002) Properties and biodegradability of polymer blends of poly(l-lactide)s with different optical purity of the lactate units. Macromol Mater Eng 287:116–121

    Article  CAS  Google Scholar 

  • Vert M, Li S, Garreau H (1991) More about the degradation of LA/GA-derived matrices in aqueous media. J Control Release 16:15–26

    Article  CAS  Google Scholar 

  • Williams DF (1981) Enzymatic hydrolysis of polylactic acid. Eng Med 10:5–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Tokiwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokiwa, Y., Calabia, B.P. Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72, 244–251 (2006). https://doi.org/10.1007/s00253-006-0488-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0488-1

Keywords

Navigation