Skip to main content
Log in

Biosynthesis of poly(ɛ-l-lysine)s in two newly isolated strains of Streptomycessp.

  • BIOTECHNOLOGICAL PRODUCTS AND PROCESS ENGINEERING
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2006

This article has been updated

Abstract

The biosynthesis of poly(ɛ-l-lysine) (ɛ-PL) in the two newly isolated strains of Streptomyceslydicus USE-11 (USE-11) and Streptomyces sp. USE-51 (USE-51) was studied by a newly developed two-stage culture method of cell growth at pH 6.8 and ɛ-PL production at pH 4.5. USE-11 synthesized ɛ-PL consisting of about 28 residues at a high production level, whereas USE-51 did the polymer with 15 ones at a low level. The secreted ɛ-PLs in culture media were digested in a neutral pH range with a peptide hydrolase(s) produced by the ɛ-PL producers. The optimum production levels were presumed to be dependent upon the inherent ɛ-PL synthesis machinery of each producer. The production in USE-51 was sharply dependent upon cell density as was often observed in the production of antibiotics, whereas that in USE-11 was scarcely affected by the density. The \({\text{SO}}^{{{\text{2 - }}}}_{{\text{4}}}\) was found to be essential for the ɛ-PL production in both strains. This might suggest the involvement of a thiol group in the polymerization reactions including the activation of l-lysine. This study indicates that USE-11 is a most suitable strain for the exploration of the ɛ-PL biosynthesis at the molecular level as well as for the technical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 01 December 2006

    The original version of this article unfortunately contained a mistake. The surname of the fourth author was incorrect and should be Ikezaki.

References

  • Ashiuchi M, Misono H (2002) Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl Microbiol Biotechnol 59:9–14

    Article  CAS  PubMed  Google Scholar 

  • Ashiuchi M, Misono H (2003) Poly-γ-glutamic acid. In: Fahnestock SR, Steinbüchel A (eds) Biopolymers, vol 7. Wiley, Weinheim, Germany, pp 123–173

    Google Scholar 

  • Ashiuchi M, Nakamura H, Yamamoto T, Kamei T, Soda K, Park C, Sung M-H, Yagi T, Misono H (2003) Poly-γ-glutamate depolymerase of Bacillus subtilis: production, simple purification and substrate selectivity. J Mol Catal B 23:249–250

    CAS  Google Scholar 

  • Ashiuchi M, Shimanouchi K, Nakamura H, Kamei T, Soda K, Park C, Sung M-H, Misono H (2004) Enzymatic synthesis of high-molecular-mass poly-γ-glutamate and regulation of its stereochemistry. Appl Environ Microbiol 70:4249–4255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashiuchi M, Soda K, Misono H (1999) A poly-γ-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells. Biochem Biophys Res Commun 263:6–12

    CAS  PubMed  Google Scholar 

  • Demain AL (1998) Induction of microbial secondary metabolism. Int Microbiol 1:259–264

    CAS  PubMed  Google Scholar 

  • Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488

    CAS  PubMed  Google Scholar 

  • Hamano Y, Nicchu I, Hoshino Y, Kawai T, Nakamori S, Takagi H (2005) Development of gene delivery systems for the ɛ-poly-L-lysine producer, Streptomyces albulus. J Biosci Bioeng 99:636–641

    CAS  PubMed  Google Scholar 

  • Hezayen FF, Rehm BHA, Eberhardt R, Steinbüchel A (2000) Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol 54:319–325

    CAS  PubMed  Google Scholar 

  • Hiraki J (2000) ɛ-Polylysine: its development and utilization. Fine Chem 29:18–25

    Google Scholar 

  • Hiraki J, Hatakeyama M, Morita H, Izumi Y (1998) Improved ɛ-poly-L-lysine production of an S-(2-aminoethyl)-L-cysteine resistant mutant of Streptomyces albulus. Seibutsu-kogaku Kaishi 76:487–493

    CAS  Google Scholar 

  • Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K, Seki H, Kimura S, Yanagimoto Y, Barnett JW Jr (2003) Use of ADME studies to confirm the safety of ɛ-polylysine as a preservative in food. Regul Toxicol Pharmacol 37:328–340

    CAS  PubMed  Google Scholar 

  • Hirayama C, Sakata M, Nakamura M, Ihara H, Kunitake M, Todokoro M (1999) Preparation of poly(ɛ-L-lysine) adsorbents and application to selective removal of lipopolysaccharides. J Chromatogr B 721:187–195

    CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Itzhaki RF (1972) Colorimetric method for estimating polylysine and polyarginine. Anal Biochem 50:569–574

    CAS  PubMed  Google Scholar 

  • Ivánovics G, Erdös L (1937) Ein Beitrag zum Wesen der Kapselsubstanz des Milizbrandbazillus. Z Immunitatsforsch 90:5–19

    Google Scholar 

  • Kahar P, Iwata T, Hiraki J, Park EY, Okabe M (2001) Enhancement of ɛ-polylysine production by Streptomyces albulus strain 410 using pH control. J Biosci Bioeng 91:190–194

    CAS  PubMed  Google Scholar 

  • Kahar P, Kobayashi K, Iwata T, Hiraki J, Kojima M, Okabe M (2002) Production of ɛ-polylysine in an airlift bioreactor (ABR). J Biosci Bioeng 93:274–280

    CAS  PubMed  Google Scholar 

  • Kawai T, Kubota T, Hiraki J, Izumi Y (2003) Biosynthesis of ɛ-poly-L-lysine in a cell-free system of Streptomyces albulus. Biochem Biophys Res Commun 311:635–640

    CAS  PubMed  Google Scholar 

  • Kito M, Onji Y, Yoshida T, Nagasawa T (2002a) Occurrence of ɛ-poly-L-lysine-degrading enzyme in ɛ-poly-L-lysine-tolerant Sphingobacterium multivorum OJ10: purification and characterization. FEMS Microbiol Lett 207:147–151

    CAS  PubMed  Google Scholar 

  • Kito M, Takimoto R, Yoshida T, Nagasawa T (2002b) Purification and characterization of an ɛ-poly-L-lysine-degrading enzyme from an ɛ-poly-L-lysine producing strain of Streptomyces albulus. Arch Microbiol 178:325–330

    CAS  PubMed  Google Scholar 

  • Kito M, Takimoto R, Onji Y, Yoshida T, Nagasawa T (2003) Purification and characterization of an ɛ-poly-L-lysine-degrading enzyme from the ɛ-poly-L-lysine-tolerant Chryseobacterium sp. OJ7. J Biosci Bioeng 96:92–94

    CAS  PubMed  Google Scholar 

  • Kleinkauf H, von Döhren H (1996) A nonribosomal system of peptide biosynthesis. Eur J Biochem 236:335–351

    CAS  PubMed  Google Scholar 

  • Kleerebezem M, Quadri LE (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 22:1579–1596

    CAS  PubMed  Google Scholar 

  • Kunioka M (1997) Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. J Microbiol Biotechnol 47:469–475

    CAS  Google Scholar 

  • Kunioka M (2004) Biodegradable water absorbent synthesized from bacterial poly(amino acid)s. Macromol Biosci 4:324–329

    CAS  PubMed  Google Scholar 

  • Kunioka M, Choi H-J (1995) Properties of biodegradable hydrogels prepared by γ-irradiation of microbial poly(ɛ-lysine) aqueous solutions. J Appl Polym Sci 58:801–806

    CAS  Google Scholar 

  • Maeda-Yamamoto M, Mori Y, Osada K, Murakami H (1995) Enhancement of production of IgM and interferon-β in human cell lines by poly-lysine. Biosci Biotechnol Biochem 59:1842–1845

    Google Scholar 

  • March JC, Bentley WE (2004) Quorum sensing and bacterial cross-talk in biotechnology. Curr Opin Biotechnol 15:495–502

    CAS  PubMed  Google Scholar 

  • Martin JF, Demain AL (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan SJ, Holden MT, Bycroft BW, Salmond GP (1999) Molecular genetics of carbapenem antibiotic biosynthesis. Antoine Van Leeuwenhoek 75:135–141

    CAS  Google Scholar 

  • Michuda CM, Martinez-Carrion M (1970) The isozymes of glutamate–aspartate transaminase. Mechanism of inhibition by dicarboxylic acids. J Biol Chem 245:262–269

    CAS  PubMed  Google Scholar 

  • Nishikawa M, Ogawa K (2002) Distribution of microbes producing antimicrobial ɛ-poly-L-lysine polymers in soil microflora determined by a novel method. Appl Environ Microbiol 68:3575–3581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Núñez LE, Méndez C, Braña AF, Blanco G, Salas JA (2003) The biosynthetic gene cluster for the β-lactam carbapenem thienamycin in Streptomyces cattleya. Chem Biol 10:301–311

    PubMed  Google Scholar 

  • Oppermann-Sanio FB, Steinbüchel A (2002) Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften 89:11–22

    PubMed  Google Scholar 

  • Oppermann-Sanio FB, Steinbüchel A (2003) Cyanophycin. In: Fahnestock SR, Steinbüchel A (eds) Biopolymers, vol 7. Wiley, Weinheim, Germany, pp 83–106

    Google Scholar 

  • Rehm BHA, Steinbüchel A (2002) PHA synthases: the key enzymes of PHA synthesis. In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 3a. Wiley, Weinheim, Germany, pp 173–215

    Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine–sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    PubMed  Google Scholar 

  • Shih I-L, Van Y-T, Shen M-H (2004) Biomedical applications of chemically and microbiologically synthesized poly(glutamic acid) and poly(lysine). Mini-Rev Med Chem 4:179–188

    CAS  PubMed  Google Scholar 

  • Shima S, Sakai H (1977) Polylysine produced by Streptomyces. Agric Biol Chem 41:1807–1809

    CAS  Google Scholar 

  • Shima S, Sakai H (1981) Poly-L-lysine produced by Streptomyces. III. Chemical studies. Agric Biol Chem 45:2503–2508

    CAS  Google Scholar 

  • Shima S, Fukuhara Y, Sakai H (1982) Inactivation of bacteriophages by ɛ-poly-L-lysine produced by Streptomyces. Agric Biol Chem 46:1917–1919

    CAS  Google Scholar 

  • Shima S, Oshima S, Sakai H (1983) Biosynthesis of ɛ-poly-L-lysine by washed mycelium of Streptomyces albulus No-346. Nippon Nôgeikagaku Kaishi 57:221–226

    CAS  Google Scholar 

  • Shima S, Matsuoka H, Iwamoto T, Sakai H (1984) Antimicrobial action of ɛ-poly-L-lysine. J Antibiot 37:1449–1455

    CAS  Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Tahara Y (2003) Characterization of the Bacillus subtilis ywtD gene, whose product is involved in γ-polyglutamic acid degradation. J Bacteriol 185:2379–2382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urushibata Y, Tokuyama S, Tahara Y (2002) Characterization of the Bacillus subtilis ywsC gene, involved in γ-polyglutamic acid production. J Bacteriol 184:337–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303:1805–1810

    CAS  PubMed  Google Scholar 

  • Weber J (1990) Poly(γ-glutamic acid)s are the major constituents of nematocysts in Hydra (Hydrozoa, Cnidaria). J Biol Chem 265:9664–9669

    CAS  PubMed  Google Scholar 

  • Wigler PW, Alberty RA (1960) The pH dependence of the competitive inhibition of fumarase. J Am Chem Soc 82:5482–5488

    Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  • Yoshida T, Hiraki J, Nagasawa T (2003) ɛ-Poly-L-lysine. In: Fahnestock SR, Steinbüchel A (eds) Biopolymers, vol 7. Wiley, Weinheim, Germany, pp 107–121

    Google Scholar 

  • Yoshida T, Nagasawa T (2003) ɛ-Poly-L-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol 62:21–26

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Hiraki and M. Hatakeyama of Chisso (Tokyo, Japan) for providing purified ɛ-PL samples, and Y. Hirose of Amano Enzyme (Nagoya, Japan) for the gift of Protease A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Hirohara.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table ESM-1

(PDF 56 kb)

Fig. ESM-1

ɛ-PL production (□) and pH value of culturemedium (▣) by fed-batch culture of USE-51 cells growth-cultured for 25 h. Arrows indicate the addition of glycerol to maintain a concentration (■) of 220 mM (GIF 11 kb)

Fig. ESM-2

Effect of concentration of citrate on ɛ-PL production in USE-11 cells growth-cultured for 36 h (GIF 12 kb)

Fig. ESM-3

Proposed pathway of ɛ-PL synthesis in Streptomyces sp. (GIF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirohara, H., Takehara, M., Saimura, M. et al. Biosynthesis of poly(ɛ-l-lysine)s in two newly isolated strains of Streptomycessp. . Appl Microbiol Biotechnol 73, 321–331 (2006). https://doi.org/10.1007/s00253-006-0479-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0479-2

Keywords

Navigation