Skip to main content
Log in

Isolation and characterization of a phenol-degrading bacterium from an industrial activated sludge

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This paper reports the successful isolation and characterization of a new phenol-degrading bacterium, strain EDP3, from activated sludge. Strain EDP3 is a nonmotile, strictly aerobic, Gram-negative, and short-rod or coccobacillary bacterium, which occurs singly, in pairs, or in clusters. 16S rRNA gene sequence analysis revealed that strain EDP3 belonged to the gamma group of Proteobacteria, with a 97.0% identity to 16S rRNA gene sequences of Acinetobacter calcoaceticus. Strain EDP3 could aerobically grow on a number of aromatic compounds, such as phenol, sodium benzoate, p-hydroxybenzoate, phenylacetate, benzene, ethylbenzene, benzylalcohol, and so on. In particular, it could mineralize up to 1,000 mg l−1 phenol at room temperature (25°C). The growth kinetics of strain EDP3 on phenol as a sole carbon and energy source at 25°C can be described using the Haldane equation. It has a maximal specific growth rate (μmax) of 0.28 h−1, a half-saturation constant (K S) of 1,167.1 mg l−1, and a substrate inhibition constant (K i) of 58.5 mg l−1. Values of yield coefficient (Y X/S) are between 0.4 and 0.6 mg dry cell (mg phenol)−1. Strain EDP3 has high tolerance to the toxicity of phenol (up to 1,000 mg l−1). It therefore could be an excellent candidate for the biotreatment of high-strength phenol-containing industrial wastewaters and for the in situ bioremediation of phenol-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd-El-Haleem D (2003) Acinetobacter: environmental and biotechnological applications. Afr J Biotechnol 2:71–74

    Article  Google Scholar 

  • Abd-El-Haleem D, Moawad H, Zaki EA, Zaki S (2002) Molecular characterization of phenol-degrading bacteria isolated from different Egyptian ecosystems. Microb Ecol 43:217–224

    Article  CAS  Google Scholar 

  • Allende JL, Gibello A, Fortun A, Mengs G, Ferrer E, Martin M (2000) 4-Hydroxybenzole uptake in an isolated soil Acinetobacter sp. Curr Microbiol 40:34–39

    Article  CAS  Google Scholar 

  • Baumann P, Doudoroff M, Stanier RY (1968) A study of the Moraxella group II. Oxidative-negative species (genus Acinetobacter). J Bacteriol 95:1520–1541

    Article  CAS  Google Scholar 

  • Bouvet PJM, Grimont PAD (1986) Taxonomy of the genus Acinetobacter with the recognition of Acinetobactrer baumannii sp. nov., Acinetobacter haemolyticus sp. nov. Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol 36:228–240

    Article  CAS  Google Scholar 

  • Cappuccino JG, Sherman N (1987) Microbiology: a laboratory manual. Benjamin/Cummings, Menlo Park, CA

  • Feitkenhauer H, Schnicke S, Muller R, Markl H (2001) Determination of the kinetic parameters of the phenol-degrading thermophile Bacillus thermoleovorans sp. A2. Appl Microbiol Biotechnol 57:744–750

    Article  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP (phylogenetic inference package). Cladistics 5:164–166

    Google Scholar 

  • Hao OJ, Kim MH, Seagren EA, Kim H (2002) Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere 46:797–807

    Article  CAS  Google Scholar 

  • Henriksen SD (1973) Moraxella, Acinetobacter, and the Mimeae. Bacteriol Rev 37(4):522–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyle BL, Scow KM, Fogg GE, Darby JL (1995) Effect of carbon:nitrogen ratio on kinetics of phenol biodegradation by Acinetobacter johnsonii in saturated sand. Biodegradation 6:283–293

    Article  CAS  Google Scholar 

  • Hunkeler D, Andersen N, Aravena R, Bernasconi SM, Butler BJ (2001) Hydrogen and carbon isotope fractionation during aerobic biodegradation of benzene. Environ Sci Technol 35:3462–3467

    Article  CAS  Google Scholar 

  • Juni E (1984) Genus III. Acinetobacter Brisou and Prevot 1954. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 303–307

    Google Scholar 

  • Kapoor A, Kumar R, Kumar A, Sharma A, Prasad S (1998) Application of immobilized mixed bacterial culture for the degradation of phenol present in oil refinery effluent. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 33:1009–1021

    Article  Google Scholar 

  • Kibret M, Somitsch W, Robra KH (2000) Characterization of a phenol degrading mixed population by enzyme assay. Water Res 34:1127–1134

    Article  CAS  Google Scholar 

  • Kim MH, Hao OJ (1999) Cometabolic degradation of chlorophenols by Acinetobacter species. Water Res 33:562–574

    Article  CAS  Google Scholar 

  • Kim SI, Song SY, Kim KW, Ho EM, Oh KH (2003) Proteomic analysis of the benzoate degradation pathway in Acinetobacter sp. KS-1. Res Microbiol 154:697–703

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GJ, Pramanik S, Schmidt TM, Tiedje JM (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174

    Article  CAS  Google Scholar 

  • Maszenan AM, Seviour RJ, Patel BKC, Rees GN, McDougall BM (1997) Amaricoccus gen. nov., a Gram-negative coccus occurring in regular packages or tetrads, isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus macauensis sp. nov., and Amaricoccus kaplicensis sp. nov. Int J Syst Bacteriol 47:727–734

    Article  CAS  Google Scholar 

  • Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) FastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48

    CAS  PubMed  Google Scholar 

  • Paller G, Hommel RK, Kleber HP (1995) Phenol degradation by Acinetobacter calcoaceticus NCIB 8250. J Basic Microbiol 35:325–335

    Article  CAS  Google Scholar 

  • Pessione E, Bosco F, Specchia V, Giunta C (1996) Acinetobacter radioresistens metabolizing aromatic compounds. 1. Optimization of the operative conditions for phenol degradation. Microbios 88:213–221

    CAS  PubMed  Google Scholar 

  • Tay STL, Hemond HF, Polz MF, Cavanaugh CM, Dejesus I, Krumholz LR (1998) Two new Mycobacterium strains and their role in toluene degradation in a contaminated stream. Appl Environ Microbiol 64:1715–1720

    Article  CAS  Google Scholar 

  • Wang SJ, Loh K-C (1999) Modelling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme Microb Technol 25:177–184

    Article  Google Scholar 

  • Watanabe K, Hino S, Takahashi N (1996) Responses of activated sludge to an increase in phenol loading. J Ferment Bioeng 82:522–524

    Article  CAS  Google Scholar 

  • Watanabe K, Teramoto M, Harayama S (1999) An outbreak of nonflocculating catabolic populations caused the breakdown of a phenol-digesting activated sludge process. Appl Environ Microbiol 65:2813–2819

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anli Geng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, A., Soh, A.E.W., Lim, C.J. et al. Isolation and characterization of a phenol-degrading bacterium from an industrial activated sludge. Appl Microbiol Biotechnol 71, 728–735 (2006). https://doi.org/10.1007/s00253-005-0199-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0199-z

Keywords

Navigation