Skip to main content
Log in

Molecular breeding of white rot fungus Pleurotus ostreatus by homologous expression of its versatile peroxidase MnP2

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Using a DNA-mediated transformation technique, a molecular breeding approach to isolate Pleurotus ostreatus strains with enhanced productivity of its versatile peroxidase MnP2 was conducted. A recombinant mnp2 construct under the control of P. ostreatus sdi1 expression signals was introduced into the wild-type P. ostreatus strain by cotransformation with a carboxin-resistant marker plasmid. A total of 32 transformants containing the recombinant mnp2 sequence were isolated in a screening with specific amplification by PCR. Productivity of MnP2 in the recombinants was evaluated by the decolorization ability of Poly R-478 on agar plates in the absence of Mn2+. Recombinant P. ostreatus strains with elevated manganese peroxidase (MnP) productivity were successfully isolated. One of the recombinants, TM2-10, was demonstrated to secrete recombinant MnP2 predominantly on a synthetic medium containing 15 mM ammonium oxalate, which was confirmed by reverse transcription PCR (RT-PCR) and isozyme profile analysis using anion-exchange chromatography. The benzo[a]pyrene-removing activity by fungal treatment was also analyzed using the isolated recombinant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2547–2553

    Article  CAS  Google Scholar 

  • Bohmer S, Messner K, Srebotnik E (1998) Oxidation of phenanthrene by fungal laccase in the presence of 1-hydroxybenzotriazole and unsaturated lipids. Biochem Biophys Res Commun 244:233–238

    Article  CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    Article  CAS  Google Scholar 

  • Camarero L, Martínez MJ, Martínez AT (1999a) A search for ligninolytic peroxidases in the fungus Pleurotus eryngii involving alpha-keto-gamma-thiomethylbutyric acid and lignin model dimers. Appl Environ Microbiol 65:916–922

    Article  Google Scholar 

  • Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martínez MJ, Martínez AT (1999b) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330

    Article  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Cohen R, Yarden O, Hadar Y (2001) Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environ Microbiol 3:312–322

    Article  CAS  Google Scholar 

  • Collins P, Kotterman MJJ, Field FA, Dobson ADW (1996) Oxidation of anthracene and benzo[a]pyrene by laccase from Trametes versicolor. Appl Environ Microbiol 162:4563–4567

    Article  Google Scholar 

  • Cullen D (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53:273–289

    Article  CAS  Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    Article  CAS  Google Scholar 

  • Giardina P, Palmieri G, Fontanella B, Rivieccio V, Sannia G (2000) Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust. Arch Biochem Biophys 376:171–179

    Article  CAS  Google Scholar 

  • Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ha H-C, Honda Y, Watanabe T, Kuwahara M (2001) Production of manganese peroxidase peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus. Appl Microbiol Biotechnol 55:704–711

    Article  CAS  Google Scholar 

  • Hammel KE, Green B, Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci U S A 88:10605–10608

    Article  CAS  Google Scholar 

  • Honda Y, Matsuyama T, Irie T, Watanabe T, Kuwahara M (2000) Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Curr Genet 37:209–212

    Article  CAS  Google Scholar 

  • Irie T, Honda Y, Matsuyama T, Watanabe T, Kuwahara M (1998) Cloning and characterization of the gene encoding the iron–sulfur protein of succinate dehydrogenase from Pleurotus ostreatus. Biochim Biophys Acta 1396:27–31

    Article  CAS  Google Scholar 

  • Irie T, Honda Y, Watanabe T, Kuwahara M (2001) Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 55:566–570

    Article  CAS  Google Scholar 

  • Johannes C, Majcherczyk A, Hüttermann A (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol 46:313–317

    Article  CAS  Google Scholar 

  • Kajita S, Sugawara S, Miyazaki Y, Nakamura M, Katayama Y, Shishido K, Iimura Y (2004) Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor. Appl Microbiol Biotechnol 66:194–199

    Article  CAS  Google Scholar 

  • Kamitsuji H, Honda Y, Watanabe T, Kuwahara M (2004) Production and induction of manganese peroxidase isozymes in a white-rot fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 65:287–294

    Article  CAS  Google Scholar 

  • Kamitsuji H, Honda Y, Watanabe T, Kuwahara M (2005a) Mn2+ is dispensable for the production of active MnP2 by Pleurotus ostreatus. Biochem Biophys Res Commun 327:871–876

    Article  CAS  Google Scholar 

  • Kamitsuji H, Watanabe T, Honda Y, Kuwahara M (2005b) Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators. Biochem J 386:387–393

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Kofujita H, Asada Y, Kuwahara M (1991) Arkil-aryl cleavage of phenolic β-O-4 lignin substructure model compound by Mn-peroxidase isolated from Pleurotus ostreatus. Mokuzai Gakkaishi 37:555–561

    CAS  Google Scholar 

  • Majcherczyk A, Johannes C, Hüttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22:335–341

    Article  CAS  Google Scholar 

  • Maspahy S, Lamb DC, Kelly SL (1999) Purification and characterization of a benzo[a]pyrene hydroxylase from Pleurotus pulmonarius. Biochem Biophys Res Commun 266:326–329

    Article  CAS  Google Scholar 

  • Mayfield MB, Kishi K, Alic M, Gold MH (1994) Homologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 60:4303–4309

    Article  CAS  Google Scholar 

  • Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Pcupper induction of laccase isozymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    Article  CAS  Google Scholar 

  • Pérez-Boada M, Doyle WA, Ruiz-Dueñas FJ, Martínez MJ, Martínez AT, Smith AT (2002) Expression of Pleurotus eryngii versatile peroxidase in Escherichia coli and optimization of in vitro folding. Enzyme Microb Technol 30:518–524

    Article  Google Scholar 

  • Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65:3805–3809

    Article  CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Martínez MJ, Martínez AT (1999) Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn2+ and different aromatic substrates. Appl Environ Microbiol 65:4705–4707

    Article  Google Scholar 

  • Sack U, Hofrichter M, Fritsche W (1997) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol Lett 152:227–234

    Article  CAS  Google Scholar 

  • Sarkanen KV (1971) Lignin: occurrence, formation, structure and reactions. Wiley, New York

    Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2003) Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase. Appl Environ Microbiol 69:3957–3964

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249

    Article  CAS  Google Scholar 

  • Vazquez-Duhalt R, Westlake DW, Fedorak PM (1994) Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl Environ Microbiol 60:459–466

    Article  CAS  Google Scholar 

  • Wolter M, Zadrazil F, Rrtens R, Bahadir M (1997) Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp. Florida in solid wheat straw substrate. Appl Microbiol Biotechnol 48:398–404

    Article  CAS  Google Scholar 

  • Zheng Z, Obbard JP (2002) Oxidation of polycyclic aromatic hydrocarbons (PAH) by the white rot fungus, Phanerochaete chrysosporium. Enzyme Microb Technol 31:3–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Honda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukihara, T., Honda, Y., Watanabe, T. et al. Molecular breeding of white rot fungus Pleurotus ostreatus by homologous expression of its versatile peroxidase MnP2. Appl Microbiol Biotechnol 71, 114–120 (2006). https://doi.org/10.1007/s00253-005-0136-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0136-1

Keywords

Navigation