Skip to main content

Advertisement

Log in

Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This review focuses on studies with bacteria for which biosynthesis/production of the plant hormones gibberellins have been demonstrated. Actual data on gibberellin metabolism by bacteria are analyzed in comparison with the biosynthetic pathways known for vascular plants and fungi. The potential involvement of gibberellins produced by symbiotic and soil-endophytic microorganisms in plant growth promotion and yield increase is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atzorn R, Crozier A, Wheeler C, Sandberg G (1988) Production of gibberellins and Indole 3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    CAS  Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azopirillum as a challenge for agriculture. Can J Microbiol 36:591–608

    CAS  Google Scholar 

  • Bastián F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Bastián F, Rapparini F, Baraldi R, Piccoli P, Bottini R (1999) Inoculation with Acetobacter diazotrophicus increases glucose and fructose content in shoots of Sorghum bicolor (L.) Moench. Symbiosis 27:147–156

    Google Scholar 

  • Bottini R, Luna V (1993) Bud dormancy in deciduous fruit trees. Curr Top Plant Physiol 1:147–159

    Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of Gibberellins A1, A3, and isoA3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47

    CAS  Google Scholar 

  • Cacciari I, Lippi D, Pietrosanti T (1989) Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum sp. and Arthrobacter. Plant Soil 115:151–153

    CAS  Google Scholar 

  • Candau R, Avalos J, Cerdá-Olmedo E (1992) Regulation of gibberellin biosynthesis in Gibberella fujikuroi. Plant Physiol 100:1184–1188

    CAS  Google Scholar 

  • Cassán F (2003) Activación de giberelinas in vivo por bacterias endofíticas a través de la deconjugación de glucosíl conjugados y la 3β-hidroxilación. PhD Thesis, Universidad Nacional de Río Cuarto

  • Cassán F, Bottini R, Schneider G, Piccoli P (2001a) Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol 125:2053–2058

    Article  PubMed  Google Scholar 

  • Cassán F, Lucangeli C, Bottini R, Piccoli P (2001b) Azospirillum spp. Metabolize [17,17-2H2]Gibberellin A20 to [17,17-2H2]Gibberellin A1 in vivo in dy rice mutant seedlings. Plant Cell Physiol 42:763–767

    Article  PubMed  Google Scholar 

  • Cassán FD, Piccoli P, Bottini R (2003) Promoción del crecimiento vegetal por Azospirillum sp. a través de la producción de giberelinas. Un modelo alternativo para incrementar la producción agrícola. In: Albanesi A, Kunst C, Anriquez A, Luna S, Ledesma R (eds) Microbiología Agrícola. Un aporte de la investigación en Argentina para la sociedad. Universidad Nacional de Santiago del Estero, Santiago, pp 1–16

    Google Scholar 

  • Cohen A, Travaglia C, Reinoso H, Piccoli P, Bottini R (2001) Azospirillum inoculation and inhibition of gibberellin and ABA synthesis in maize seedlings under drought. Proc Plant Growth Regul Soc Am 28:88–93

    Google Scholar 

  • Creus C, Sueldo R, Barassi C (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944

    CAS  Google Scholar 

  • Crozier A, Kamiya Y, Bishop G, Yokota T (2000) Biosynthesis of hormones and elicitor molecules. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiology, Rockville, pp 850–929

    Google Scholar 

  • Curtis PJ, Cross BE (1954) Gibberellic acid. A new metabolite from the culture filtrates of Gibberella fujikuroi. Chem Ind 1066

  • Davies PJ (1995) The plant hormones: their nature, occurrence and functions. In: Davies PJ (ed) Plant hormones. Physiology, biochemistry and molecular biology. Kluwer, Dordrecht, pp 1–12

    Google Scholar 

  • De-Polli H, Matsui E, Döbereiner J, Salatti E (1977) Confirmation of nitrogen fixation in two tipical grasses by 15N2 incorporation. Soil Biol Biochem 9:119–123

    Article  CAS  Google Scholar 

  • Dobert RC, Rood SB, Blevins DG (1992) Gibberellins and the legume-Rhizobium symbiosis. I. Endogenous gibberellins of lima bean (Phaseolus lunatus L.) stems and nodules. Plant Physiol 98:221–224

    CAS  Google Scholar 

  • Döbereiner J, Mariel IE, Nery M (1976) Ecological distribution of Spirillum lipoferum Beinjerick. Can J Microbiol 22:1464–1473

    PubMed  Google Scholar 

  • Flouri F, Sini K, Balis C (1995) Interactions between Azospirillum and Phialophora radicicola. NATO ASI Ser G 37:231–237

    Google Scholar 

  • Fulchieri M, Lucangeli C, Bottini R (1993) Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots. Plant Cell Physiol 34:1305–1309

    CAS  Google Scholar 

  • Glick BR, Patten CL, Holquin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College, London

    Google Scholar 

  • Gutiérrez-Mañero F, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Hedden P, Phillips A (2000) Gibberellin metabolism: new insights revealed genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  • Janzen R, Rood S, Dormar J, McGill W (1992) Azospirillum brasilense produces gibberellins in pure culture and chemically-medium and in co-culture on straw. Soil Biol Biochem 24:1061–1064

    Article  CAS  Google Scholar 

  • King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prising open the lid of the “Florigen” black box. Annu Rev Plant Physiol Plant Mol Biol 54:307–328

    Article  CAS  PubMed  Google Scholar 

  • Kucey RMN (1988) Plant growth-altering effects of Azospirillum brasilense and Bacillus C-11-25 on two wheat cultivars. J Appl Bacteriol 64:187–196

    CAS  Google Scholar 

  • Linnemannstöns P, Voß T, Hedden P, Gaskin P, Tudzynski B (1999) Deletions in the gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme-mediated integration and conventional transformation-mediated mutagenesis. Appl Environ Microbiol 65:2558–2564

    PubMed  Google Scholar 

  • Litchtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Phsyiol Plant Mol Biol 50:47–65

    Article  Google Scholar 

  • Lucangeli C, Bottini R (1996) Reversion of dwarfism in dwarf-1 maize (Zea mays L.) and dwarf-x rice (Oryza sativa L.) mutants by endophytic Azospirillum spp. Biocell 20:223–228

    Google Scholar 

  • Lucangeli C, Bottini R (1997) Effects of Azospirillum spp. on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis 23:63–72

    CAS  Google Scholar 

  • Ludden PW, Okon Y, Burris RH (1978) The nitrogenase system of Spirillum lipoferum. Biochem J 173:1001–1003

    CAS  PubMed  Google Scholar 

  • MacMillan J (1997) Biosynthesis of the gibberellin plant hormones. Nat Prod Rep 14:221–243

    CAS  Google Scholar 

  • MacMillan J (2002) Occurrence of gibberellins in vascular plants, fungi and bacteria. J Plant Growth Regul 20:387–442

    Article  Google Scholar 

  • Macmillan J, Suter PJ (1958) The occurrence of gibberellin A1 in higher plants: isolation from the seed of runner bean (Phaseolus multiflorus). Naturwissenschaften 45:46

    CAS  Google Scholar 

  • Mende K, Homann V, Tudzynski B (1997) The geranylgeranyl diphosphate synthase gene of Gibberella fujikuroi: isolation and expression. Mol Gen Genet 255:96–105

    Article  CAS  PubMed  Google Scholar 

  • Okon Y, Labandera-González C (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1976a) Factors affecting growth and nitrogen fixation of Spirillum lipoferum. J Bacteriol 127:1248–1254

    CAS  PubMed  Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1976b) Carbon and ammonia metabolism of Spirillum lipoferum. J Bacteriol 128:592–597

    CAS  PubMed  Google Scholar 

  • Pharis RP, King RW (1985) Gibberellins and reproductive development in seed plants. Annu Rev Plant Physiol 36:517–568

    Article  CAS  Google Scholar 

  • Piccoli P, Bottini R (1994a) Metabolism of 17,17-[2H2]gibberellin A20 to 17,17-[2H2]gibberellin A1 by Azospirillum lipoferum cultures. AgriScientia XI:13–15

    Google Scholar 

  • Piccoli P, Bottini R (1994b) Effects of C/N relationships, N content, pH, and time of culture on growth and gtibberellin production of Azospirillum lipoferum cultures. Symbiosis 17:229–236

    CAS  Google Scholar 

  • Piccoli P, Bottini R (1996) Light enhancement of gibberellin production by Azospirillum lipoferum cultures. Biocell 20:200–207

    Google Scholar 

  • Piccoli P, Masciarelli O, Bottini R (1996) Metabolism of 17,17[2H2]-Gibberellins A4, A9, and A20 by Azospirillum lipoferum in chemically-defined culture medium. Symbiosis 21:167–178

    Google Scholar 

  • Piccoli P, Lucangeli D, Schneider G, Bottini R (1997) Hydrolysis of [17,17-2H2]Gibberellin A20-Glucoside and [17,17-2H2]Gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen-free biotin-based chemically-defined medium. Plant Growth Regul 23:179–182

    Article  CAS  Google Scholar 

  • Piccoli P, Masciarelli O, Bottini R (1999) Gibberellin Production by Azospirillum lipoferum cultured in chemically-defined medium as affected by oxygen availability and water status. Symbiosis 27:135–146

    CAS  Google Scholar 

  • Probanza A, García JAL, Palomino MR, Ramos B, Manero FJG (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl Soil Ecol 20:75–84

    Google Scholar 

  • Reinoso H, Dauría C, Luna V, Pharis R, Bottini R (2002) Dormancy in peach (Prunus persica L.) flower buds VI. Effects of gibberellins and an acylcyclohexanedione (Cimectacarb) on bud morphogenesis in field experiments with orchard trees and on cuttings. Can J Bot 80:656–663

    Article  Google Scholar 

  • Rojas MC, Hedden P, Gaskin P, Tudzynski B (2001) The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proc Natl Acad Sci USA 98:5838–5843

    Google Scholar 

  • Schneider G (1983) Gibberellin conjugates. In: Crozier A (ed) The biochemistry and physiology of gibberellins, vol 1. Praeger, New York, pp 389–456

    Google Scholar 

  • Sponsel VM (2002) The deoxy xylulose phosphate pathway for the biosynthesis of plastidic isoprenoids: early days in our understanding of the early stages of gibberellin biosynthesis. J Plant Growth Regul 20:332–345

    Article  Google Scholar 

  • Sponsel VM (2003) Gibberellins. In: Henry HL, Norman AW (eds) Encyclopedia of hormones, vol 2. Academic, pp 29–40

    Google Scholar 

  • Sponsel VM, Hedden P (2004) Gibberellin biosynthesis and catabolism. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Kluwer, Dordrecht

    Google Scholar 

  • Tamura S (1990) Historical aspects of gibberellins. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins. Springer, Berlin Heidelberg New York, pp 1–8

    Google Scholar 

  • Tanimoto E (1987) Gibberellin-dependent root elongation in Lactuca sativa: recovery from growth retardant-suppressed elongation with thickening by low concentration of GA3. Plant Cell Physiol 28:963–973

    CAS  Google Scholar 

  • Trewavas A (2000) Signal perception and transduction. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiology, Rockville, pp 930–987

    Google Scholar 

  • Tudzynski B, Hedden P, Carrera E, Gaskin P (2001) The P450-4 Gene of Gibberella fujikuroi encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway. Appl Environ Microbiol 67:3514–3522

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B, Rojas MC, Gaskin P, Hedden P (2002) The gibberellin 20-oxidase of Gibberella fujikuroi is a multifunctional monooxygenase. J Biol Chem 277:21246–21253

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B, Mihlan M, Rojas MC, Linnemannstons P, Gaskin P, Hedden P (2003) Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi: des and P450-3 encode GA4 desaturase and the 13-hydroxylase, respectively. J Biol Chem 278:28635–28643

    Article  CAS  PubMed  Google Scholar 

  • Tully RE, van Berkum P, Lovins KW, Keister DL (1998) Identification and sequencing of a cytochrome P450 gene cluster from Bradyrhizobium japonicum. Biochim Biophys Acta 1398:243–255

    Article  CAS  PubMed  Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernández M, Hollingsworth RI, Martínez-Molina E, Mateos P, Velázquez E, Wopereis J, Triplett E, Umali-García M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28:845–870

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Bottini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottini, R., Cassán, F. & Piccoli, P. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65, 497–503 (2004). https://doi.org/10.1007/s00253-004-1696-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1696-1

Keywords

Navigation