Skip to main content
Log in

Chestnut bur-shaped aggregates of chrysotile particles enable inoculation of Escherichia coli cells with plasmid DNA

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, Escherichia coli cells exhibited antibiotic resistance after transformation with exogenous plasmid DNA adsorbed onto chrysotile particles during agar-exposure. We previously demonstrated penetration of E. coli by chrysotile particles during agar-exposure. To further investigate the mechanism by which transformation of E. coli is achieved through the use of chrysotile fibers, the interaction between E. coli cells and chrysotile was examined during agar-exposure. Dispersion of chrysotile particles within the chrysotile solution was analyzed by flow cytometry. A suspension containing E. coli cells expressing blue fluorescence protein and chrysotile particles was exposed to agar using stirring apparatus, which allowed a constant vertical reaction force to be applied to the surface of the gel. Fluorescence microscopy was then used to illustrate the adsorption of fluorescein isothiocyanate-conjugated DNA oligomers to chrysotile. Larger aggregates were observed when increasing concentrations of chrysotile were added to the solution. With prolonged exposure, during which surface moisture diffused into the agar gel, greater concentrations of chrysotile were observed on the agar surface. In addition, chrysotile aggregates exceeding 50 μm developed on the agar surface. They were shaped like a chestnut bur. The chrysotile aggregates penetrated the cell membranes of adherent E. coli cells during agar-exposure due to sliding friction forces generated at the interface of the agar and the stirring stick. E. coli cells thus acquired plasmid DNA and antibiotic resistance, since the plasmid DNA had been adsorbed onto the chrysotile particles. The inoculation of plasmid DNA into E. coli cells demonstrates the usefulness of chrysotile for E. coli transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi S, Kawamura K, Takemoto K (2001) A trial on the quantitative risk assessment of man-made mineral fibers by the rat intraperitoneal administration assay using the JFM standard fibrous samples. Ind Health 39:168–174

    CAS  PubMed  Google Scholar 

  • Appel JD, Fasy TM, Kohtz DS, Kohtz JD, Johnson EM (1988) Asbestos fibers mediate transformation of monkey cells by exogenous plasmid DNA. Proc Natl Acad Sci USA 85:7670–7674

    CAS  PubMed  Google Scholar 

  • Balan E, Mauri F, Lemaire C, Brouder C, Guyot F, Saitta AM, Devouard B (2002) Multiple ionic-plasmon resonances in naturally occurring multiwall nanotubes: infrared spectra of chrysotile asbestos. Phys Rev Lett 89:177401

    Article  PubMed  Google Scholar 

  • Cualing HD (2000) Automated analysis in flow cytometry. Cytometry 42:110–113

    Article  CAS  PubMed  Google Scholar 

  • Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455

    Article  CAS  PubMed  Google Scholar 

  • Darzynkiewicz Z, Juan G (1999) Selective extraction of fragmented DNA from apoptotic cells for analysis by gel electrophoresis and identification of apoptotic cells by flow cytometry. Methods Mol Biol 113:599–605

    Article  CAS  PubMed  Google Scholar 

  • De Zen L, Bicciato S, Kronnie G, Basso G (2003) Computational analysis of flow-cytometry antigen expression profiles in childhood acute lymphoblastic leukemia: an MLL/AF4 identification. Leukemia 17:1557–1565

    Article  PubMed  Google Scholar 

  • Dumortier P, Rey F, Viallat JR, Broucke I, Boutin C, De Vuyst P (2002) Chrysotile and tremolite asbestos fibres in the lungs and parietal pleura of Corsican goats. Occup Environ Med 59:643–646

    Article  CAS  PubMed  Google Scholar 

  • Gibbs GW, Hwang CY (1980) Dimensions of airborne asbestos fibres. IARC Sci Publ 30:69–78

    PubMed  Google Scholar 

  • Gong JP, Higa M, Iwasaki Y, Katsuyama Y, Osada Y (1997) Friction of gels. J Phys Chem B 101:5487–5489

    Article  CAS  Google Scholar 

  • Gong JP, Iwasaki Y, Osada Y (1999) Friction of gels. 3. Friction on solid surfaces. J Phys Chem B 103:6001–6006

    Article  CAS  Google Scholar 

  • Gong JP, Iwasaki Y, Osada Y (2000) Friction of gels. 5. Negative dependence of polysaccharide gels. J Phys Chem B 104:3423–3428

    Article  CAS  Google Scholar 

  • Gottwald E, Lahni B, Ludke G, Preckel T, Buhlmann C (2003) Intracellular HSP72 detection in HL60 cells using a flow cytometry system based on microfluidic analysis. Biotechniques 35:358–367

    CAS  PubMed  Google Scholar 

  • Hannick LI, Prasher DC, Schultz LW, Deschamps JR, Ward KB (1993) Preparation and initial characterization of crystals of the photoprotein aequorin from Aequorea victoria. Proteins 15:103–107

    CAS  PubMed  Google Scholar 

  • Heintz NH, Janssen YM, Mossman BT (1993) Persistent induction of c-fos and c-jun expression by asbestos. Proc Natl Acad Sci USA 90:3299–3303

    CAS  PubMed  Google Scholar 

  • Khan K, Aslam M, Orfi SD, Khan HM (2001) Radiological significance of building bricks in Pakistan. Radiat Prot Dosimetry 95:263–266

    CAS  PubMed  Google Scholar 

  • Krishan A, Wen J, Thomas RA, Sridhar KS, Smith WI Jr (2001) NASA/American Cancer Society High-Resolution Flow Cytometry Project-III. Multiparametric analysis of DNA content and electronic nuclear volume in human solid tumors. Cytometry 43:16–22

    Article  CAS  PubMed  Google Scholar 

  • Masui S, Kuroiwa H, Sasaki T, Inui M, Kuroiwa T, Ishikawa H (2001) Bacteriophage WO and virus-like particles in Wolbachia, an endosymbiont of arthropods. Biochem Biophys Res Commun 283:1099–1104

    Article  CAS  PubMed  Google Scholar 

  • Mossman BT, Bignon J, Corn M, Seaton A, Gee JB (1990) Asbestos: scientific developments and implications for public policy. Science 247:294–301

    CAS  PubMed  Google Scholar 

  • Nebe-von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA (2000) Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Methods 42:97–114

    Article  CAS  PubMed  Google Scholar 

  • Nelson M (2002) Analysis of heterogeneous red cell populations by flow cytometry. Methods Cell Sci 24:19–25

    Article  CAS  PubMed  Google Scholar 

  • Nunez R (2001) DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol 3:67–70

    CAS  PubMed  Google Scholar 

  • Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    CAS  PubMed  Google Scholar 

  • Pele JP, Calvert RA (1983) comparative study on the hemolytic action of short asbestos fibers on human, rat, and sheep erythrocytes. Environ Res 31:164–175

    CAS  PubMed  Google Scholar 

  • Pooley FD, Ranson DL (1986) Comparison of the results of asbestos fibre dust counts in lung tissue obtained by analytical electron microscopy and light microscopy. J Clin Pathol 39:313–317

    CAS  PubMed  Google Scholar 

  • Prasher DC (1995) Using GFP to see the light. Trends Genet 11:320–323

    Article  CAS  PubMed  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  PubMed  Google Scholar 

  • Rosochacki SJ, Matejczyk M (2002) Green fluorescent protein as a molecular marker in microbiology. Acta Microbiol Pol 51:205–216

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Scangos G, Ruddle FH (1981) Mechanisms and applications of DNA-mediated gene transfer in mammalian cells. Gene 14:1–10

    Article  CAS  PubMed  Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Yuen SR (2002) Asbestos fibers contributing to the induction of human malignant mesothelioma. Ann NY Acad Sci 982:160–176

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Churg J, Ono T (1972) Phagocytic activity of the alveolar epithelial cells in pulmonary asbestosis. Am J Pathol 69:373–388

    CAS  PubMed  Google Scholar 

  • Takeuchi T, Morimoto K (1994) Crocidolite asbestos increased 8-hydroxydeoxyguanosine levels in cellular DNA of a human promyelocytic leukemia cell line, HL60. Carcinogenesis 15:635–639

    CAS  PubMed  Google Scholar 

  • Thomas RA, Krishan A, Robinson DM, Sams C, Costa F (2001) NASA/American Cancer Society high-resolution flow cytometry project—I. Cytometry 43:2–11

    Article  CAS  PubMed  Google Scholar 

  • To KY, Boyde TR (1993) Pulsed-field acceleration: the electrophoretic behavior of large spherical particles in agarose gels. Electrophoresis 14:597–600

    CAS  PubMed  Google Scholar 

  • Tweedale G (2002) Asbestos and its lethal legacy. Nat Rev Cancer 2:311–315

    Article  CAS  PubMed  Google Scholar 

  • US EPA (1988) Report to Congress, study of asbestos-containing materials in public buildings. Environmental Protection Agency, Washington, D.C., p. 5

  • Wang NS, Jaurand MC, Magne L, Kheuang L, Pinchon MC, Bignon J (1987) The interactions between asbestos fibers and metaphase chromosomes of rat pleural mesothelial cells in culture. A scanning and transmission electron microscopic study. Am J Pathol 126:343–349

    CAS  PubMed  Google Scholar 

  • Wen J, Krishan A, Thomas RA (2001) NASA/American Cancer Society High-Resolution Flow Cytometry Project-II. Effect of pH and DAPI concentration on dual parametric analysis of DNA/DAPI fluorescence and electronic nuclear volume. Cytometry 43:12–15

    Article  CAS  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Protein, nucleotide improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Yoshida N, Saeki Y (2004) Chrysotile fibers penetrate Escherichia coli cell membrane and cause cell bursting by sliding friction force on agar plates. J Biosci Bioeng 97:162–168

    CAS  Google Scholar 

  • Yoshida N, Ikeda T, Yoshida T, Sengoku T, Ogawa K (2001) Chrysotile asbestos fibers mediate transformation of Escherichia coli by exogenous plasmid DNA. FEMS Microbiol Lett 195:133–137

    Article  CAS  PubMed  Google Scholar 

  • Yoshida N, Kodama K, Nakata K, Yamashita M, Miwa T (2002) Escherichia coli cells penetrated by chrysotile fibers are transformed to antibiotic resistance by incorporation of exogenous plasmid DNA. Appl Microbiol Biotechnol 60:461–468

    Article  CAS  PubMed  Google Scholar 

  • Brodsky AS, Johnston AP, Trau M, Silver PA (2003)Analysis of RNA–protein interactions by flow cytometry.Curr Opin Mol Ther 5:235–240

    CAS  PubMed  Google Scholar 

  • Dubes GR, Mack LR (1988) Asbestos-mediated transfection of mammalian cellcultures.In Vitro Cell Dev Biol Anim 24:175–182

    CAS  Google Scholar 

  • Misra V, Rahman Q, Viswanathan PN (1983) Adsorption of nucleic acids on asbestos fibers in vitro.Toxicol Lett15:187–191

    Google Scholar 

  • Moscone EA, Baranyi M, Ebert I, Greilhuber J, Ehrendorfer F, Hunziker AT(2003)Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometryand Feulgen densitometry.Ann Bot (Lond) 92:21–29

    Google Scholar 

  • Parod RJ, Brain JD (1983) Uptake of latex particles by macrophages: characterization using flowcytometry.Am J Physiol 245:220–226

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research ©) (No. 15580307) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, N., Saeki, Y. Chestnut bur-shaped aggregates of chrysotile particles enable inoculation of Escherichia coli cells with plasmid DNA. Appl Microbiol Biotechnol 65, 566–575 (2004). https://doi.org/10.1007/s00253-004-1649-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1649-8

Keywords

Navigation