Skip to main content
Log in

Non-conventional yeasts as producers of polyhydroxyalkanoates—genetic engineering of Arxula adeninivorans

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The non-conventional yeast Arxula adeninivorans was equipped with the genes phbA, phbB and phbC of the polyhydroxyalkanoate (PHA) biosynthetic pathway of Ralstonia eutropha, which encode β-ketothiolase, NADPH-linked acetoacetyl-CoA reductase and PHA synthase, respectively. Arxula strains transformed solely with the PHA synthase gene (phbC) were able to produce PHA. However, the maximum content of the polymer detected in these strains was just 0.003% poly-3-hydroxybutyrate (PHB) and 0.112% poly-3-hydroxyvalerate (PHV). The expression of all three genes (phbA, phbB, phbC) resulted in small increases in the PHA content of the transgenic Arxula cells. However, under controlled cultivation conditions with minimal medium and ethanol as the carbon source, the recombinant yeast was able to accumulate up to 2.2% PHV and 0.019% PHB. Possible reasons for these differences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–C
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Babel W (1997) Polyhydroxyalkansäuren—ein Kapitel Umweltprophylaxe. BioWorld 4:16–20

    Google Scholar 

  • Babel W, Ackermann JU, Breuer U (2001) Physiology, regulation, and limits of the synthesis of poly(3HB). Adv Biochem Eng/Biotechnol 71:125–157

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breuer U, Ackermann JU, Babel W (1995) Accumulation of poly(3-hydroxybutyric acid) and overproduction of exopolysaccharides in a mutant of a methylotrophic bacterium. Can J Microbiol 41 [Suppl 1]: 55–59

    Google Scholar 

  • Breuer U, Terentiev Y, Kunze G, Babel W (2002) Yeast as producers of polyhydroxyalkanoates: genetic engineering of Saccharomyces cerevisiae. Macromol Biosci 8:380–386

    Article  Google Scholar 

  • Davis E, Larkins BA, Knight RH (1972) Polysomes from peas. An improved method for their isolation in the absence of ribonuclease inhibitors. Plant Physiol 50:581–584

    Google Scholar 

  • Gellissen G, Hollenberg CP (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis. Gene 190:87–97

    CAS  PubMed  Google Scholar 

  • Gerngross TU, Snell KD, Peoples OP, Sinskey AJ, Csuhai E, Masamune S, Stubbe J (1994) Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry 33:9311–9320

    CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  • Kunze G, Kunze I (1994) Characterization of Arxula adeninivorans strains from different habitats. Antonie Van Leeuwenhoek 65:29–34

    CAS  PubMed  Google Scholar 

  • Leaf TA, Peterson MS, Stoup SK, Somers D, Srienc F (1996) Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiology 142:1169–1180

    CAS  PubMed  Google Scholar 

  • Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci USA 91:12760–12764

    CAS  PubMed  Google Scholar 

  • Poirier Y, Erard N, Macdonald-Comber Petetot J (2001) Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid β-oxidation. Appl Environ Microbiol 67:5254–5260

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y, Erard N, Macdonald-Comber Petetot J (2002) Synthesis of polyhydroxyalkanoates in the peroxisome of Pichia pastoris. FEMS Microbiol Lett 207:97–102

    Article  CAS  PubMed  Google Scholar 

  • Riis V, Mai W (1988) Gas chromatographic determination of poly-β-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. J Chromatogr 445:285–289

    Article  CAS  Google Scholar 

  • Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics. A laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Rösel H, Kunze G (1998) Integrative transformation of the dimorphic yeast Arxula adeninivorans LS3 based on hygromycin B resistance. Curr Genet 33:157–163

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Samsonova IA, Kunze G, Bode R, Böttcher F (1996) A set of genetic markers for the chromosomes of the imperfect yeast Arxula adeninivorans. Yeast 12:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Stoltenburg R, Wartmann T, Kunze I, Kunze G (1995) Reliable method to separate free and membrane-bound polysomes from different yeast species. Bio/Techniques 18:564–568

    Google Scholar 

  • Tanaka A, Ohnishi N, Fukui S (1967) Studies on the formation of vitamins and their function in hydrocarbon fermentation. Production of vitamin B6by Candida albicans in hydrocarbon medium. J Ferment Technol 45:617–623

    CAS  Google Scholar 

  • Valentin HE, Steinbüchel A (1993) Application of enzymatically synthesized short-chain-length hydroxy fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid synthases. Appl Microbiol Biotechnol 40:699–709

    Article  Google Scholar 

  • Wartmann T, Kunze G (2000) Genetic transformation and biotechnological application of the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 54:619–624

    Article  CAS  PubMed  Google Scholar 

  • Wartmann T, Erdmann J, Kunze I, Kunze G (2000) Morphology-related effects on gene expression and protein accumulation of the yeast Arxula adeninivorans LS3. Arch Microbiol 173:253–261

    Article  CAS  PubMed  Google Scholar 

  • Wartmann T, Böer E, Huarto-Pico A, Sieber H, Bartelsen O, Gellissen G, Kunze G (2002) High-level production and secretion of recombinant proteins by the dimorphic yeast Arxula adeninivorans. FEMS Yeast Res 2:363–369

    Article  CAS  PubMed  Google Scholar 

  • Wartmann T, Stoltenburg R, Böer E, Sieber H, Bartelsen O, Gellissen G, Kunze G (2003a) The ALEU2 gene—a new component for an Arxula adeninivorans-based expression platform. FEMS Yeast Res 3:223–232

    Article  CAS  PubMed  Google Scholar 

  • Wartmann T, Bellebna C, Böer E, Gellissen G, Kunze G (2003b) The constitutive AHSB4-promoter—a novel component of the Arxula adeninivorans based expression platform. Appl Microbiol Biotechnol 62:528–535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Steinbüchel for kindly providing the PHB synthesis genes of R. eutropha. We would also like to thank H. Bohlmann, E. Häusler and I. Schmeling for their excellent technical assistance. This research work was supported by the Deutsche Bundesstiftung Umwelt (AZ 13048) and by funds from Chemical Industry (G.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kunze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terentiev, Y., Breuer, U., Babel, W. et al. Non-conventional yeasts as producers of polyhydroxyalkanoates—genetic engineering of Arxula adeninivorans . Appl Microbiol Biotechnol 64, 376–381 (2004). https://doi.org/10.1007/s00253-003-1498-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1498-x

Keywords

Navigation