Skip to main content
Log in

Identification and functional characterization of a type I signal peptidase gene of Bacillus megaterium DSM319

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The sipM gene of Bacillus megaterium encoding a type I signal peptidase (SPase) was isolated and structurally characterized. RNA analysis revealed a transcript size in accordance with a bicistronic operon comprising sipM and an adjacent open reading frame. Inactivation of sipM by targeted gene disruption could not be achieved, indicating its essential role for cell viability since there might be no other type I SPase of major importance present in B. megaterium. Plasmid-assisted amplification of the gene resulted in an increase in activity of the heterologous glucanase used as an extracellular reporter, suggesting a potential bottleneck for protein secretion within this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–C
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Black MT (1993) Evidence that the catalytic activity of prokaryote leader peptidase depends upon the operation of a serine-lysine catalytic dyad. J Bacteriol 175:4957–4961

    CAS  PubMed  Google Scholar 

  • Bolhuis A, Tjalsma H, Smith HE, de Jong A, Meima R, Venema G, Bron S, van Dijl JM (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis. Appl Environ Microbiol 65:2934–2941

    CAS  PubMed  Google Scholar 

  • Borriss R, Buettner K, Maentsaelae P (1990) Structure of the beta-1,3-1,4-glucanase gene of Paenibacillus macerans: homologies to other beta-glucanases. Mol Gen Genet 222:278–283

    CAS  PubMed  Google Scholar 

  • Bron S, Bolhuis A, Tjalsma H, Holsappel S, Venema G, van Dijl JM (1998) Protein secretion and possible roles for multiple signal peptidases for precursor processing in Bacilli. J Biotechnol 64:3–13

    Article  CAS  PubMed  Google Scholar 

  • Chu HH, Hoang V, Kreutzmann P, Hofemeister B, Melzer M, Hofemeister J (2002) Identification and properties of type I-signal peptidases of Bacillus amyloliquefaciens. Eur J Biochem 269:458–469

    Article  CAS  PubMed  Google Scholar 

  • Cregg KM (1996) Molecular cloning and expression of the spsB gene encoding an essential type I signal peptidase from Staphylococcus aureus. J Bacteriol 178:5712–5718

    CAS  PubMed  Google Scholar 

  • Date T (1983) Demonstration by a novel genetic technique that leader peptidase is an essential enzyme of Escherichia coli. J Bacteriol 154:76–83

    CAS  PubMed  Google Scholar 

  • Debabov VG (1982) The industrial use of Bacilli. In: Dubnau DA (ed) The molecular biology of the Bacilli, vol 1. Academic Press, New York, pp 331–370

  • Fekkes P, Driessen AJ (1999) Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev 63:161–173

    CAS  PubMed  Google Scholar 

  • Ferrari E, Jarnagin AS, Schmidt BF (1993) Commercial production of extracellular enzymes. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other Gram-positive bacteria. American Society for Microbiology, Washington, D.C., pp 917–937

  • Gärtner D, Geissendörfer M, Hillen W (1988) Expression of Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. J Bacteriol 170:3102–3109

    PubMed  Google Scholar 

  • Jarnagin AS, Ferrari E (1992) Extracellular enzymes: gene regulation and structure function relationship studies. In: Doi RH, McGloughlin M (eds) Biology of Bacilli: applications to industry. Butterworth-Heinemann, Stoneham, Mass., pp 191–219

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S et al (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    CAS  PubMed  Google Scholar 

  • Lee JS, Wittchen KD, Stahl C, Strey J, Meinhardt F (2001) Cloning, expression, and carbon catabolite repression of the bamM gene encoding beta-amylase of Bacillus megaterium DSM319. Appl Microbiol Biotechnol 56:205–211

    Article  CAS  PubMed  Google Scholar 

  • Meijer WJ, de Jong A, Bea G, Wisman A, Tjalsma H, Venema G, Bron S, van Dijl JM (1995) The endogenous Bacillus subtilis (natto) plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Mol Microbiol 17:621–631

    CAS  PubMed  Google Scholar 

  • Meinhardt F, Stahl U, Ebeling W (1989) Highly efficient expression of homologous and heterologous genes in Bacillus megaterium. Appl Microbiol Biotechnol 41:344–351

    Article  Google Scholar 

  • Miller GL (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 352–355

  • Moran CP Jr, Lang N, LeGrice SF, Lee G, Stephens M, Sonenshein AL, Pero J, Losick R (1982) Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet 186:339–346

    CAS  PubMed  Google Scholar 

  • Morita M, Tomita K, Ishizawa M, Takagi K, Kawamura J, Takahashi H, Morino T (1999) Cloning of oxetanocin A biosynthetic and resistance genes that reside on a plasmid of Bacillus megaterium strain NK84-0128. Biosci Biotechnol Biochem 63:563–566

    CAS  PubMed  Google Scholar 

  • Nagao T, Mitamura T, Wang XH, Negoro S, Yomo T, Urabe I, Okada H (1992) Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus megaterium IAM1030. J Bacteriol 174:5013–5020

    CAS  PubMed  Google Scholar 

  • Paetzel M, Dalbey RE, Strynadka NC (2002) Crystal structure of a bacterial signal peptidase apoenzyme: implications for signal peptide binding and the Ser-Lys dyad mechanism. J Biol Chem 277:9512–9519

    Article  CAS  PubMed  Google Scholar 

  • Peng SB, Wang L, Moomaw J, Peery RB, Sun PM, Johnson RB, Lu J, Treadway P, Skatrud PL, Wang QM (2001) Biochemical characterization of signal peptidase I from Gram-positive Streptococcus pneumoniae. J Bacteriol 183:621–627

    Article  CAS  PubMed  Google Scholar 

  • Priest FG (1989) Products from Bacilli. In: Harwood CF (ed) Handbooks of biotechnology, vol 2. Plenum, New York, pp 293–315

  • Rygus T, Hillen W (1992) Catabolite repression of the xyl operon in Bacillus megaterium. J Bacteriol 174:3049–3055

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schmiedel D, Kintrup M, Kuster E, Hillen W (1997) Regulation of expression, genetic organization and substrate specificity of xylose uptake in Bacillus megaterium. Mol Microbiol 23:1053–1062

    CAS  PubMed  Google Scholar 

  • Shaw GC, Fulco AJ (1992) Barbiturate-mediated regulation of expression of the cytochrome P450BM-3 gene of Bacillus megaterium by Bm3R1 protein. J Biol Chem 267:5515–5526

    CAS  PubMed  Google Scholar 

  • Shaw GC, Chiou CY, Chou YH, Li JM (2002) mbgA-dependent lactose utilization by Bacillus megaterium. Curr Microbiol 44:102–105

    CAS  PubMed  Google Scholar 

  • Stahl U, Esser K (1983) Plasmid heterogeneity in various strains of Bacillus megaterium. Eur J Appl Biotechnol 17:248–251

    CAS  Google Scholar 

  • Strey J, Wittchen KD, Meinhardt F (1999) Regulation of beta-galactosidase expression in Bacillus megaterium DSM319 by a XylS/AraC-type transcriptional activator. J Bacteriol 181:3288–3292

    CAS  PubMed  Google Scholar 

  • Tjalsma H, Bolhuis A, van Roosmalen ML, Wiegert T, Schumann W, Broekhuizen CP, Quax WJ, Venema G, Bron S, van Dijl JM (1998) Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev 12:2318–2331

    CAS  PubMed  Google Scholar 

  • Tjalsma H, van den Dolder J, Meijer WJ, Venema G, Bron S, van Dijl JM (1999) The plasmid-encoded signal peptidase SipP can functionally replace the major signal peptidases SipS and SipT of Bacillus subtilis. J Bacteriol 181:2448–2454

    CAS  PubMed  Google Scholar 

  • Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    CAS  PubMed  Google Scholar 

  • Van Dijl JM, de Jong A, Smith H, Bron S, Venema G (1991) Signal peptidase I overproduction results in increased efficiencies of export and maturation of hybrid secretory proteins in Escherichia coli. Mol Gen Genet 227:40–48

    PubMed  Google Scholar 

  • Van Dijl JM, de Jong A, Venema G, Bron S (1995) Identification of the potential active site of the signal peptidase SipS of Bacillus subtilis. Structural and functional similarities with LexA-like proteases. J Biol Chem 270:3611–3618

    Article  PubMed  Google Scholar 

  • Vary PS (1992) Development of genetic engineering in Bacillus megaterium: an example of the versatility and potential of industrially important Bacilli. In: Doi RH, McGloughlin M (eds) Biology of Bacilli: applications to industry. Butterworth-Heinemann, Stoneham, Mass., pp 253–310

  • Vary PS (1993) The genetic map of Bacillus megaterium. In: Ganesan AT, Hoch JA (eds), Genetics and biotechnology of Bacilli, vol 2. Academic Press, New York, pp 475–481

  • Vary PS (1994) Prime time for Bacillus megaterium. Microbiology 140:1001–1013

    CAS  PubMed  Google Scholar 

  • Vellanoweth RL, Rabinowitz JC (1992) The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 6:1105–1114

    CAS  PubMed  Google Scholar 

  • Von Tersch MA, Robbins HL (1990) Efficient cloning in Bacillus megaterium: comparison to Bacillus subtilis and Escherichia coli cloning hosts. FEMS Microbiol Lett 58:305–309

    PubMed  Google Scholar 

  • Vorobjeva I, Khemel A, Alföldi I (1980) Transformation of Bacillus megaterium protoplasts by plasmid DNA. FEMS Microbiol Lett 7:261–263

    CAS  Google Scholar 

  • Wittchen KD, Meinhardt F (1995) Inactivation of the major extracellular protease from Bacillus megaterium DSM319 by gene replacement. Appl Microbiol Biotechnol 42:871–877

    Google Scholar 

  • Wittchen KD, Strey J, Bultmann A (1998) Molecular characterization of the operon comprising the spoIV gene of Bacillus megaterium DSM319 and generation of a deletion mutant. J Gen Appl Microbiol 44:317–326

    CAS  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    PubMed  Google Scholar 

  • Zukowski MM (1992) Production of commercially valuable products. In: Doi RH, McGloughlin M (eds) Biology of Bacilli: applications to industry. Butterworth-Heinemann, Stoneham, Mass., pp 311–337

Download references

Acknowledgements

This work was supported by grants from the Federal Ministry of Education and Research (BMBF, Bonn-Bad Godesberg, Germany), grant no. 0319179E and 0312613. M.A. Rachman thanks the German Academic Exchange Service (DAAD, Bonn-Bad Godesberg, Germany) for financial support. The authors wish to thank K. Müller (Münster, Germany) for cloning the fragment carrying sipM in partially fulfillment of her diploma thesis, and J. Paluszynski (Münster, Germany) for checking the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Meinhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahrstedt, H., Wittchen, K.D., Rachman, M.A. et al. Identification and functional characterization of a type I signal peptidase gene of Bacillus megaterium DSM319. Appl Microbiol Biotechnol 64, 243–249 (2004). https://doi.org/10.1007/s00253-003-1469-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1469-2

Keywords

Navigation