Skip to main content
Log in

Synthesis of α-galactooligosaccharides with α-galactosidase from Lactobacillus reuteri of canine origin

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Crude cell-free extracts from Lactobacillus reuteri grown on cellobiose, maltose, lactose and raffinose were assayed for glycosidic activities. When raffinose was used as the carbon source, α-galactosidase was produced, showing the highest yield at the beginning of the stationary growth phase. A 64 kDa enzyme was purified by ultra- and gel filtration, and characterized for its hydrolytic and synthetic activity. Highest hydrolytic activity was found at pH 5.0 at 50 °C (K M 0.55 mM, V max 0.80 μmol min−1 mg−1 of protein). The crude cell-free extract was further used in glycosyl transfer reactions to synthesize oligosaccharides from melibiose and raffinose. At a substrate concentration of 23% (w/v) oligosaccharide mixtures were formed with main products being a trisaccharide at 26% (w/w) yield from melibiose after 8 h and a tetrasaccharide at 18% (w/w) yield from raffinose after 7 h. Methylation analysis revealed the trisaccharide to be 6′ α-galactosyl melibiose and the tetrasaccharide to be stachyose. In both cases synthesis ceased when hydrolysis of the substrate reached 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Benno Y, Endo K, Shiragami N, Sayama K, Mitsuoka T (1987) Effect of raffinose intake on human fecal microflora. Bifidobact Microflora 6:59–63

    Google Scholar 

  • Bulpin PV, Gidley MJ, Jeffcoat R, Underwood DJ (1990) Development of a biotechnological process for the modification of galactomannan polymers with plant α-galactosidase. Carbohydr Polym 12:155–168

    CAS  Google Scholar 

  • Casas IA, Dobrogosz WJ (2000) Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microbial Ecol Health Dis 12:247–285

    Article  Google Scholar 

  • El-Ziney MG, Debevere JM (1998) The effect of reuterin on Listeria monocytogenes and E. coli 0157:H7 in milk and cottage cheese. J Food Protect 61:1275–1280

    CAS  Google Scholar 

  • Fridjonsson O, Watzlawick H, Mattes R (2000) The structure of the alpha-galactosidase gene loci in Thermus brockianus ITI360 and Thermus thermophilus TH125. Extremophiles 4:23–33

    Article  CAS  PubMed  Google Scholar 

  • Fuller R, Gibson GR (1998) Probiotics and prebiotics: microflora management for improved gut health. Clin Microbiol Infect 4:477–480

    Google Scholar 

  • Ganzle MG, Holtzel A, Walter J, Jung G, Hammes WP (2000) Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66:4325–4333

    Google Scholar 

  • Garregg PJ (1990) Phase-transfer for selective substitution in carbohydrates and inositols. Abstr PAP AM Chem 199:10–15

    Google Scholar 

  • Garro MS, de Giori GS, de Valdez GF, Oliver G (1993) Characterization of alpha-galactosidase from Lactobacillus fermentum. J Appl Bacteriol 75:485–488

    CAS  Google Scholar 

  • Geel-Schuten GH van, Faber EJ, Smit E, Bonting K, Dijkhuizen L (1999) Biochemical and structural characterization of the glucan and fructan exopolysaccharides synthesized by the Lactobacillus reuteri wild type strain and by mutant strains. App Environ Microbiol 65:3008–3014

    Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota. Introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Laere KMJ van, Hartemink R, Beldman G, Pitson S, Dijkema C, Schols HA, Voragen AGJ (1999) Transglycosidase activity of Bifidobacterium adolescentis DSM 20083 α-galactosidase. Appl Microbiol Biotechnol 52:681–688

    PubMed  Google Scholar 

  • Li X, Yang L, Yan P, Zuo F, Jin F (1997) Factors regulating production of alpha-galactosidase from Bacillus sp. JF(2). Lett Appl Microbiol 25:1–4

    PubMed  Google Scholar 

  • Mital BK, Schallenberger RS, Steinkraus KH (1973) α-Galactosidase activity of lactobacilli. Appl Microbiol 26:783–788

    CAS  PubMed  Google Scholar 

  • Mitsutomi M, Ohtakara A (1988) Isolation and identification of oligosaccharides produced from raffinose by transgalactosylation reaction of thermostable α-galactosidase from Pycnoporus cinnabarinus. Agric Biol Chem 52:2305–2311

    CAS  Google Scholar 

  • Molin G, Jeppsson B, Johansson ML, Ahrne S, Nobaek S, Stahl M, Bengmark S (1993) Numerical taxonomy of Lactobacillus spp. associated with healthy and diseased mucosa of the human intestines. J Appl Bacteriol 74:314–323

    CAS  PubMed  Google Scholar 

  • Ohshima T, Murray GJ, Swaim WD, Longenecker G, Quirk JM, Cardarelli CO, Sugimoto Y, Pastan I, Gottesman MM, Brady RO, Kulkarni AB (1997) α-Galactosidase A deficient mice: a model of Fabry disease. Proc Natl Acad Sci USA 94:2540–2544

    Article  CAS  PubMed  Google Scholar 

  • Peterbauer T, Richter A (2001) Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci Res 11:185–197

    CAS  Google Scholar 

  • Rabiu BA, Jay AC, Gibson GR, Rastall RA (2001) Synthesis and fermentation properties of novel galactooligosaccharides by β-galactosidases from Bifidobacterium spp. Appl Environ Microbiol 67:2526–2530

    Article  CAS  PubMed  Google Scholar 

  • Rastall RA, Bucke C (1992) Enzymatic synthesis of oligosaccharides. Biotechnol Gen Eng Rev 10:253–281

    CAS  Google Scholar 

  • Rolfe VE, Adams CA, Butterwick RF, Batt RM (2002) Relationships between fecal consistency and colonic microstructure and absorptive function in dogs with and without nonspecific dietary sensitivity. Am J Vet Res 63:617–622

    PubMed  Google Scholar 

  • Rycroft CE, Jones MR, Gibson GR, Rastall RA (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 91:878–887

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Tachiki T, Kumagai H, Tochikura T (1987) Hydrolysis of α-galactosyl oligosaccharides in soymilk by α-galactosidase of Bifidobacterium breve 203. Agric Biol Chem 51:315–321

    CAS  Google Scholar 

  • Sandine WE (1979) Roles of Lactobacillus in the intestinal tract. J Food Protect 42:259–262

    CAS  Google Scholar 

  • Savel'ev AN, Ibatyllin FM, Eneyskay EV, Kachurin AM, Neustroev KN (1996) Enzymatic properties of α-galactosidase from Trichoderma reesei. Carbohydr Res 296:261–273

    Article  CAS  Google Scholar 

  • Shibuya H, Nagasaki H, Kaneko S, Yoshida S, Park GG, Kusakabe I, Kobayashi H (1998) Cloning and high-level expression of alpha-galactosidase cDNA from Penicillium purpurogenum. Appl Env Microbiol 64:4489–4494

    Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85

    PubMed  Google Scholar 

  • Toone ESJ, Simon ES (1989) Enzyme-catalyzed synthesis of carbohydrates. Tetrahedron 45:5365–5422

    Article  CAS  Google Scholar 

  • Withers SG (2001) Mechanisms of glycosyl transferases and hydrolases. Carb Polym 44:325–337

    Article  CAS  Google Scholar 

  • Xiao M, Tanaka K, Qian XM, Yamamoto K, Kumagai H (2000) High yield production and characterization of α-galactosidase from Bifidobacterium breve grown on raffinose. Biotechnol Lett 22:747–751

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Rastall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzortzis, G., Jay, A.J., Baillon, M.L.A. et al. Synthesis of α-galactooligosaccharides with α-galactosidase from Lactobacillus reuteri of canine origin. Appl Microbiol Biotechnol 63, 286–292 (2003). https://doi.org/10.1007/s00253-003-1426-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1426-0

Keywords

Navigation