Skip to main content
Log in

The ability of Bipolaris sorokiniana to modify geraniol and (−)-alpha-bisabolol as exogenous substrates

  • Short Contribution
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biocatalytic potential of Bipolaris sorokiniana was investigated in its ability to modify the monoterpene geraniol and the sesquiterpene alpha-bisabolol as exogenous substrates, using phosphate buffer as reaction medium. The cultures showed a promising oxidative profile, with conversion of geraniol to 6-methyl-5-hepten-2-one (74.9% yield) in a 5-day incubation and alpha-bisabolol to bisabolol oxide B (84.2% yield), in a 7-day incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

References

  • Adams RP (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectrometry. Allured, Chicago, Ill.

  • Amid C, Moisseeff M, Fallot J (1982) Biogenesis of monoterpenes: bioconversion of citral by a cell suspension culture of Muscat grapes. Plant Cell Rep 1:91–93

    Google Scholar 

  • Baptistella LHB, Sousa IMO, Gushikem Y, Aleixo AM (1999) Chromium (VI) adsorbed on SiO2/ZrO2, a new supported reagent for allylic oxidations. Tetrahedron Lett 40:2695–2698

    Article  CAS  Google Scholar 

  • Berger RG, Akkan Z, Drawert F (1990) Catabolism of geraniol by cell suspension cultures of Citrus limon. Biochim Biophys Acta 1055:234–139

    Article  CAS  PubMed  Google Scholar 

  • Carriere F, Gil G, Tapie P, Chagvardieff P (1989) Biotransformation of geraniol by photoautotrophic, photomixotrophic and heterotrophic plant cell suspensions. Phytochemistry 28:1087–1090

    Article  CAS  Google Scholar 

  • Cormier F, Amid C (1987) Extractive bioconversion of geraniol by a Vitis viniferae cell suspension employing a two-phase system. Plant Cell Rep 6:427–432

    CAS  Google Scholar 

  • Demyttenaere JCR, DePooter HL (1996) Biotransformation of geraniol and nerol by spores of Penicillium italicum. Phytochemistry 41:1079–1082

    Article  CAS  Google Scholar 

  • Demyttenaere JCR, Kimpe N (2001) Biotransformation of terpenes by fungi. Study of the pathways involved. J Mol Catal B Enzym 11:265–270

    Article  CAS  Google Scholar 

  • Demyttenaere JCR, Herrera MC, Kimpe N (2000) Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp. Phytochemistry 55:363–373

    Article  CAS  PubMed  Google Scholar 

  • Doig SD, Boam AT, Leak DJ, Livingston AG, Stuckey DC (1998) Optimization of the kinetics of the stereoselective reduction of geraniol to citronelol in a two-liquid phase system. Biocatal Biotransform 16:27–44

    Google Scholar 

  • FDA (1985) United States code of federal regulations 21:101.22a.3. Food and Drug Administration, Washington, D.C.

    Google Scholar 

  • Frosch F (1987) Bioactive substances from BASF for cosmetics. Tluszce, Srodki Piorace, Kosmet 31:144–147

    CAS  Google Scholar 

  • Gramatica P, Manitto P, Ranzin BM, Delbianco A, Franca Villa M (1982) Stereoespecific reduction of geraniol to (R)-(+)-citronellol by Saccharomyces cerevisiae. Experimenta 38:775–776

    CAS  Google Scholar 

  • Guardida J, Iborra JL, Rodenas L, Canovas M (1996) Biotransformation from geraniol to nerol by immobilized grapevine cells (V. viniferae). Appl Biochem Biotechnol 56:169–180

    Google Scholar 

  • Hamada H, Yasumune H, Fuchikami Y, Hirata T, Sattler I, Williams H, Scott AI (1997) Biotransformation of geraniol, nerol and (+)- and (−)-carvone by suspension cultured cells of Catharanthus roseus. Phytochemistry 44:615–621

    Article  Google Scholar 

  • Harmange JC, Figadère B (1993) Synthetic routes to 2,5-disubstituted tetrahydrofurans. Tetrahedron Assym 4:1711–1754

    Article  CAS  Google Scholar 

  • Hashidoko Y, Tahara S, Mizutani J (1991) Highly oxygenated bisabolanoids in Rosa rugosa leaves. Z Naturforsch [C] 46:357–359

  • King A, Dickinson RJ (2000) Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast 16:499–506

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy S (1989) Indigenous essential oils: Recent developments and perfumery applications. Indian Perfum 33:215–218

    CAS  Google Scholar 

  • Lappin GJ, Stride JD, Tampion J (1987) Biotransformation of monoterpenoids by suspension cultures of Lavandula angustifolia. Phytochemistry 26:995–997

    Article  CAS  Google Scholar 

  • McAndrew BA (1992) Sesquiterpenoids: the lost dimension of perfumery. Perfum Flavour 17:1–17

    CAS  Google Scholar 

  • Miyazawa M, Funatsu Y, Kameoka H (1990) Biotransformation of (−)-alpha-bisabolol to (−)-alpha-bisabolol oxide B by Aspergillus niger. Chem Express 5:589–592

    CAS  Google Scholar 

  • Miyazawa M, Funatsu Y, Kameoka H (1992) Biotransformation of (−)-alpha-bisabolol to (−)-alpha-tetrahidrobisabolen-2,5,6-triol by Aspergillus niger. Chem Express 7:217–220

    CAS  Google Scholar 

  • Miyazawa M, Nankai H, Kameoka H (1993) Biotransformation of (−)-alpha-bisabolol to (2S,5S,1′S,3′S,4′S)-6-methyl-2-(4′-methylcyclohexane-1′-yl)2,5-epoxyheptane-3′,4′,6-triol by Glomerella cingulata. Chem Express 8:401–404

    CAS  Google Scholar 

  • Miyazawa M, Nankai H, Kameoka H (1995) Biotransformation of (−)-alpha-bisabolol by the plant pathogenic fungus, Glomerella cingulata. Phytochemistry 39:1077–1080

    Article  CAS  Google Scholar 

  • Molinari F, Gandolfi R, Converti A, Zilli M (2000) Mycelium-bound carboxylesterase from Aspergillus oryzae: an efficient catalytic for acetylation in organic solvent. Enzyme Microb Technol 27:626–630

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Toratsu Y, Fuji Y, Ichinoe M, Hamasaki T (1998) Biosynthesis of sorokinianin a phytotoxin of Bipolaris sorokiniana: evidence of mixed origin from the sesquiterpene and TCA pathways. Tetrahedron Lett 39:1013–1016

    Article  CAS  Google Scholar 

  • Orsini F, Pelizzoni F (1980) Biotransformation of geraniol into cineole in Rosmarinus officinalis. Gazz Chim Ital 110:553–555

    CAS  Google Scholar 

  • Reynolds JEF(ed) (1996) Martindale. The extra pharmacopea, 31st edn. The Pharmaceutical Press, London

  • Shepherd T (1994) Ecology of plant pathogens. In: Blakeman JP, Williamson B (eds) Plant pathogens. CAB International, Wallingford, pp 39–92

  • Torrado S, Agis A, Jimenez ME, Cadorniga R (1995) Effect of dissolution profile and (−)-alpha-bisabolol on the gastrotoxicity of acetylsalicylic acid. Pharmazie 50:141–143

    CAS  PubMed  Google Scholar 

  • Vichnewski W, Takahashi AM, Nasi AMT, Rodrigues DC, Gonçalves DADG, Lopes JNC, Goedken VL, Gutiérrez AB, Herz W (1989) Sesquiterpene lactones and other constituents from Eremanthus seidelli, E. goyazensis and Vanillosmopsis erythropappa. Phytochemistry 28:1441–1451

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CNPq, CAPES and FAPERGS for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Henriques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limberger, R.P., Ferreira, L., Castilhos, T. et al. The ability of Bipolaris sorokiniana to modify geraniol and (−)-alpha-bisabolol as exogenous substrates. Appl Microbiol Biotechnol 61, 552–555 (2003). https://doi.org/10.1007/s00253-003-1270-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1270-2

Keywords

Navigation