Skip to main content

Advertisement

Log in

Identification and characterization of the lamprey cathepsin genes

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Cathepsins are key mammalian proteases that play an important role in the immune response. Several studies have revealed the versatile and critical functions of cathepsins. Here, we obtained ten kinds of cathepsin homologs and identified seven homologs with complete coding sequences. Phylogenetic analysis verified their identities and supported the classification of cathepsins into seven families, which is similar to other vertebrates. Tissue-specific expression analysis showed that all lamprey cathepsins (L-cathepsins) are present in the supraneural body (SB), kidney, gill, intestine, brain, heart, and liver, but their relative abundance varied among tissues. Additionally, we focused on the lamprey cathepsin L (L-cathepsin L) and used recombinant L-cathepsin L protein (rL-cathepsin L) to prepare anti rL-cathepsin L polyclonal antibodies, which were used to detect its distribution in lamprey tissues. The L-cathepsin L protein was primarily detected in the SB, kidney, gill, intestine, brain, and liver via western blot and immunohistochemistry assays. Importantly, quantitative real-time PCR (RT-PCR) revealed that the expression level of L-cathepsins mRNA significantly increased after exposure to three different stimuli (poly I:C, Staphylococcus aureus (S.a) and Vibro anguilarum (V.an)). This suggested that L-cathepsins may participate in defense processes. These results revealed that L-cathepsins may play key roles in the immune response to exogenous stimuli. The findings provide important information for future studies aiming to understand the molecular mechanisms underlying the immune response to pathogen invasion in lamprey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bruchard M, Mignot G, Derangère V, Chalmin F, Chevriaux A, Végran F, Boireau W, Simon B, Ryffel B, Connat JL, Kanellopoulos J, Martin F, Rébé C, Apetoh L, Ghiringhelli F (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Caglic D, Pungercar JR, Pejler G, Turk V, Turk B (2007) Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide-mature enzyme interactions. J Biol Chem 282(45):33076–33085

    Article  CAS  PubMed  Google Scholar 

  • Cocchiaro P, De Pasquale V, Della Morte R, Tafuri S, Avallone L, Pizard A, Moles A, Pavone LM (2017) The multifaceted role of the lysosomal protease cathepsins in kidney disease. Front Cell Dev Biol 5:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Conus S, Simon HU (2010) Cathepsins and their involvement in immune responses. Swiss Med Wkly 140:w13042

    PubMed  Google Scholar 

  • Cook C, Stankowski JN, Carlomagno Y, Stetler C, Petrucelli L (2014) Acetylation: a new key to unlock tau's role in neurodegeneration. Alzheimers Res Ther 6(3):29

    Article  PubMed  PubMed Central  Google Scholar 

  • Criscitiello MF, Ohta Y, Graham MD, Eubanks JO, Chen PL, Flajnik MF (2012) Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II. Dev Comp Immunol 36(3):521–533

    Article  CAS  PubMed  Google Scholar 

  • Dennemärker J, Lohmüller T, Mayerle J, Tacke M, Lerch MM, Coussens LM, Peters C, Reinheckel T (2010a) Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis. Oncogene 29(11):1611–1621

    Article  CAS  PubMed  Google Scholar 

  • Dennemärker J, Lohmüller T, Müller S, Aguilar SV, Tobin DJ, Peters C, Reinheckel T (2010b) Impaired turnover of autophagolysosomes in cathepsin L deficiency. Biol Chem 391(8):913–922

    Article  PubMed  Google Scholar 

  • Dijkstra JM, Yamaguchi (2019) Ancient features of the MHC class II presentation pathway, and a model for the possible origin of MHC molecules. Immunogenetics 71(3):233–249

    Article  CAS  PubMed  Google Scholar 

  • Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135(2):284–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godahewa GI, Perera NCN, Lee S, Kim MJ, Lee J (2017) A cysteine protease (cathepsin Z) from disk abalone, Haliotis discus discus: genomic characterization and transcriptional profiling during bacterial infections. Gene 627:500–507

    Article  CAS  PubMed  Google Scholar 

  • Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14(2):207–219

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson OS, Collin SP, Kröger RH (2008) Early evolution of multifocal optics for well-focused colour vision in vertebrates. J Exp Biol 211(Pt 10):1559–1564

    Article  CAS  PubMed  Google Scholar 

  • Hsing LC, Rydensky AY (2005) The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol Rev 207:229–241

    Article  CAS  PubMed  Google Scholar 

  • Ishidoh K, Kominami E (2002) Processing and activation of lysosomal proteinases. Biol Chem 383(12):1827–1831

    Article  CAS  PubMed  Google Scholar 

  • Lecaille F, Kaleta J, Brömme D (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 102(12):4459–4488

    Article  CAS  PubMed  Google Scholar 

  • Nair SV, Del Valle H, Gross PS, Terwilliger DP, Smith LC (2005) Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics 22(1):33–47

    Article  CAS  PubMed  Google Scholar 

  • Navab R, Pedraza C, Fallavollita L, Wang N, Chevet E, Auguste P, Jenna S, You Z, Bikfalvi A, Hu J, O'Connor R, Erickson A, Mort JS, Brodt P (2008) Loss of responsiveness to IGF-I in cells with reduced cathepsin L expression levels. Oncogene 27(37):4973–4985

    Article  CAS  PubMed  Google Scholar 

  • Nikitina N, Bronner-Fraser M, Sauka-Spengler T (2009) The sea lamprey Petromyzon marinus: a model for evolutionary and developmental biology. Cold Spring Harb Protoc 2009(1):pdb.emo113

    Article  PubMed  Google Scholar 

  • Olson OC, Joyce JA (2015) Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 15(12):712–729

    Article  CAS  PubMed  Google Scholar 

  • Palermo C, Joyce JA (2008) Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci 29(1):22–28

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Li Y, Jia L, Qin Y, Qi G, Cheng J, Qi Y, Li H, Du J (2012) Cathepsin S deficiency results in abnormal accumulation of autophagosomes in macrophages and enhances Ang II-induced cardiac inflammation. PLoS One 7(4):e35315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Y, Wang S, Ba W, Li Q (2015) Cell secretion from the adult lamprey supraneural body tissues possesses cytocidal activity against tumor cells. Springerplus 4:569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park B, Brinkmann MM, Spooner E, Lee CC, Kim YM, Ploegh HL (2008) Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat Immunol 9(12):1407–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlings ND, Barrett AJ, Finn R (2016) Twenty years of the MEROPS database of proteolyticenzymes, their substrates and inhibitor. Nucleic Acids Res 44(D1):D343–D350

    Article  CAS  Google Scholar 

  • Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120(10):3421–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riese RJ, Chapman HA (2000) Cathepsins and compartmentalization in antigen presentation. Curr Opin Immunol 12(1):107–113

    Article  CAS  PubMed  Google Scholar 

  • Rossi A, Deveraux Q, Turk B, Sali A (2004) Comprehensive search for cysteine cathepsins in the human genome. Biol Chem 385:363–372

    Article  CAS  PubMed  Google Scholar 

  • Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Li W et al (2013) Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 45(4):415–421 421e1-412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoka V, Turk V, Turk B (2016) Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev 32:22–37

    Article  CAS  PubMed  Google Scholar 

  • Turk B, Turk D, Salvesen GS (2002) Regulating cysteine protease activity: essential role of protease inhibitors as guardians and regulators. Curr Pharm Des 8(18):1623–1637

    Article  CAS  PubMed  Google Scholar 

  • Uinuk-Ool TS, Takezaki N, Kuroda N, Figueroa F, Sato A, Samonte IE, Mayer WE, Klein J (2003) Phylogeny of antigen-processing enzymes: cathepsins of a cephalochordate, an agnathan and a bony fish. Scand J Immunol 58(4):436–448

    Article  CAS  PubMed  Google Scholar 

  • Unanue ER, Turk V, Neefjes J (2016) Variations in MHC class II antigen processing and presentation in health and disease. Annu Rev Immunol 34:265–297

    Article  CAS  PubMed  Google Scholar 

  • Watts C (1997) Capture and processing of exogenous antigens for presentation on MHC molecules. Annu Rev Immunol 15:821–850

    Article  CAS  PubMed  Google Scholar 

  • Willstätter R, Bamann E (1929) Über die Proteasen der Magenschleimhaut. Erste Abhandlung über die Enzyme der Leukocyten. Hoppe Seylers Z Physiol Chem 180:127–143

    Article  Google Scholar 

  • Xiao R, Zhang Z, Wang H, Han Y, Gou M, Li B, Duan D, Wang J, Liu X, Li Q (2015) Identification and characterization of a cathepsin D homologue from lampreys (Lampetra japonica). Dev Comp Immunol 49(1):149–156

    Article  CAS  PubMed  Google Scholar 

  • Zavasnik-Bergant T, Turk B (2006) Cysteine cathepsins in the immune response. Tissue Antigens 67(5):349–355

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Chinese Major State Basic Research Development Program (973 Program; Grant2013CB835304), the Marine Public Welfare Project of the State Oceanic Administration (No.201305016), Chinese National Natural Science Foundation Grants (No. 31170353, No. 31202020, No. 31772884, and No. 31801973), Science and Technology Innovation Fund Research Project (No. 2018J12SN079), and the project of Department of Ocean and Fisheries of Liaoning Province (No. 201805).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingwei Li or Yue Pang.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

Fig. 1 Expression of L-cathepsin L recombinant proteins and production, affinity purification and identification of anti- rL-cathepsin L antibodies. a Expression of rL-cathepsin L protein in E. coli BL21 (DE3). Lane 1: total protein of uninduced E. coli harboring pCold I-L-cathepsin L; Lane 2-6: total protein of induced E. coli harboring pCold I-L-cathepsin L after treatment with 0.1 mM, 0.05 mM, 0.15 mM, 0.01 mM and 0.5 mM IPTG for 24 h at 16℃; Lane 7-8: supernatant precipitation from induced E. coli BL21 (DE3) harboring pCold I-L-cathepsin L after treatment with 0.1 mM IPTG for 24 h at 16℃ after sonication. The arrow points to L-cathepsin L. b Purification of rL-cathepsin L protein by HisTrap™ affinity columns. Lane 1: supernatant from induced E. coli BL21 (DE3) harboring pCold I-L-cathepsin L after sonication; Lane 2: flow through; Lane 3: equilibrium; Lane 4-9: elution by iminazole, concentration gradient of 30, 50, 100, 200, 300 and 400 mM; M: protein marker. The arrow points to rL-cathepsin L. c The titer of anti-rL-cathepsin L polyclonal antibody by ELISA assay. The rabbit sera before immunization was used as a control. d Identification of the anti-rL-cathepsin L polyclonal antibody by SDS-PAGE. Lane 1: rabbit anti-rL-cathepsin L antisera; Lane 2: flow through; Lane 3: equilibrium; Lane 4: elution by 0.1 M glycine-HCI (pH 2.7); M: protein marker. The arrow points to the heavy chains and light chains of the antibody (PNG 1.0 MB)

High resolution image (TIF 99.6 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Su, P., Wang, X. et al. Identification and characterization of the lamprey cathepsin genes. Immunogenetics 71, 421–432 (2019). https://doi.org/10.1007/s00251-019-01117-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-019-01117-w

Keywords

Navigation